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https://www.bbc.com/news/business-577618731. Introduction
Real-World Problem Examples

https://www.theverge.com/2017/7/12/15957844/ai-fake-video-audio-

speech-obama

https://www.theverge.com/22672123/ai-voice-clone-

synthesis-deepfake-applications-vergecast
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2. Speaker Anonymization (Voice Privacy Challenge (VPC))
Privacy Preservation by Speaker Anonymization

Requirements:

1. Speaker identity must be hidden

2. The output anonymized speech should be natural and intelligible

3. The language information should be preserved

4. Following a speaker-to-speaker correspondence (each speaker 

corresponds to a pseudo-speaker)
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2. Speaker Anonymization
VPC Protocols
• Scenario

➢ Speakers want to hide their identity while allowing any desired 

goal to be potentially achieved.

➢ The attacker has access to a single utterance and wants to 

identify the corresponding speaker.
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• Attack model (the attacker has access to various amounts of 

data):

➢ one or more anonymized trial utterances,

➢ possibly, several additional utterances for each speaker, 

which may or may not have been anonymized and are 

called enrollment utterances



2. Speaker Anonymization
Baseline Systems

⦿ B1a : primary baseline with neural source-filter (NSF) 
model + x-vector

⦿ B1b : primary baseline with a unified HiFi-GAN NSF 
model + x-vector

⦿ B2a : speaker anonymization using McAdams 
coefficients (𝛼 = 0.8)

⦿ B2b : speaker anonymization using McAdams 
coefficients 𝛼~𝑈 0.5,0.9
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3. Proposed Methods
Time-Scale Modification (TSM) Approach
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3. Proposed 
Methods
Pitch 
Shifting 
using TSM

𝑭𝟎𝒚 𝒕 = 𝟐𝒏/𝟏𝟐 × 𝑭𝟎𝒙 𝒕

𝐹0 of original signal

𝐹0 of anonymized signal
Shift parameter 

in semitone
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4. Experiments
Experimental Setup

⦿ Dataset for development (Dev) and evaluation (Test):
LibriSpeech and VCTK
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⦿ Evaluation
⌾ Privacy: using an automatic speaker verification (ASV)
⌾ Utility: using an automatic speech recognition (ASR), 

pitch correlation, the gain of voice distinctiveness



4. Experiments
ASVeval (VPC 2020 Scenario)
⦿ Speaker verifiability (ASVeval) : High EER = better privacy
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⦿ Speech Intelligibility : Low WER = better utility

4. Experiments
Results (VPC 2020 - ASReval)
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4. Experiments
Results (Privacy vs Utility)
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4. Experiments
Results (VPC 2022 – ASVeval)

⦿ Semi-informed 
attack model
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4. Experiments
Results (VPC 2022 – secondary utility metrics)

p
it

c
h

 c
o

rr
e

la
ti

o
n

 ↑

th
e
 g

a
in

 o
f 

v
o

ic
e
 ↓

d
is

ti
n

c
ti

v
e

n
e
s

s

14



5. Conclusion and Future Work

⦿ Method of PV-TSM also can preserve secondary utility metrics. 
⦿ In future, we will investigate more the shift parameter and non-linear 

pitch shifting using the PV-TSM algorithm.

15

⦿ Two major algorithms of TSM were investigated (TD-PSOLA and PV-TSM) 
for speaker anonymization based on VPC protocols. 

⦿ TD-PSOLA algorithm can be used for pitch shifting but is insufficient for 
privacy protection in the ASV system.

⦿ In contrast, pitch shifting by the PV-TSM algorithm for speaker 
anonymization providing the highest balance of privacy-utility metrics 
(esp., a-a scenario/lazy-informed).



Thank you!


