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Abstract
Speaker anonymization is the task of modifying speech record-
ings to hide the identity of the original speaker by changing
the voice in the audio. Simultaneously, the anonymized audio
should remain usable for downstream tasks and thus keep other
information of the original audio like the linguistic content.
This typically creates a privacy-utility trade-off of anonymiza-
tion techniques. In our submission to the VoicePrivacy 2022
Challenge, we aim to reduce this trade-off by creating a speech-
to-speech pipeline that (a) eliminates all clues about speaker
identity by reducing the audio to phonetic transcriptions, (b)
generates a new, non-existent voice using a Generative Adver-
sarial Network, leading to artificial yet natural-like and dis-
tinctive speakers, and (c) synthesizes an anonymous version of
the original utterance based on the transcriptions, anonymous
speaker embedding, and estimated pitch. According to the ob-
jective evaluation, this anonymization method leads to almost
perfect privacy and voice distinctiveness, and clearly outper-
forms all baseline systems for these two metrics. For the speech
recognition utility metric, we achieve similar good results on
LibriSpeech and much better ones on VCTK as compared to
the baselines and the original non-anonymized data. Solely for
pitch correlation, we only just meet the required threshold be-
cause our system does not use the original pitch trajectory for
synthesis. Overall, our approach successfully hides the speaker
identity while keeping the linguistic content, proving to be gen-
erally more effective than any of the baselines of the VoicePri-
vacy 2022 Challenge.
Index Terms: speaker anonymization, voice privacy, generative
adversarial networks, speech synthesis, speech recognition

1. Introduction
In this paper, we describe our submission to the VoicePrivacy
2022 Challenge [1]. Our system is based on the anonymiza-
tion pipeline proposed by [2] and extends it by the generation
of artificial speaker embeddings using a Generative Adversarial
Network (GAN). In this way, the anonymous speaker embed-
dings follow a similar distribution as the ones of the original
speakers which allows us to sample non-existent but still real-
istic new voices. The whole pipeline consists then of a high-
quality speech recognition model that converts the acoustic ut-
terance into phonetic transcriptions, the GAN-based speaker
embedding generation, and a high-quality speech synthesis sys-
tem that uses the speaker embedding and transcription to gener-
ate an anonymous version of the original utterance.

We show improvements of our approach as compared to the
baseline systems of the challenge on almost all objective met-
rics. The secondary utility metric of pitch correlation is the only
one in which our system performs worse and only just meets
the required threshold of 0.3. However, we believe it to be un-
favorable to keep the pitch of the original recording because

this can reveal information about the speaker. By explicitly not
using the original pitch and instead estimating it from the tran-
scribed speech, we achieve almost perfect anonymization that
cannot be evaded by training the speaker verification attacker on
anonymized data. Simultaneously, the anonymization results in
almost the same voice distinctiveness as the data originally had,
and, according to speech recognition, produces intelligible and
content-preserving audio recordings.
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Figure 1: Architecture of the speaker anonymization pipeline.

The pipeline in its general outline is the same as described
by [2] and shown in Figure 1. It consists of four models: (i) a
speech recognition (ASR) model to transcribe the speech into
phonetic sequences, (ii) a speaker embedding extractor, (iii) an
anonymization module that exchanges the original speaker em-
bedding by an anonymous one, and (iv) a text-to-speech (TTS)
system to convert content and speaker embedding into spoken
utterances. Each component will be described in more detail in
the following.

2.1. Speech Recognition Module

Our ASR model is based on the hybrid CTC/attention architec-
ture [3] with a Conformer as encoder [4] and a Transformer de-
coder. It is implemented in the ESPnet2 toolkit [5]. The neural
network follows the standard configuration with dmodel = 512,
dff = 2048, dh = 8, E = 12, D = 6 and Conv kernel
size of 31. 80-dimensional log-mel Filterbank features are ex-
tracted from the input speech in order to be processed by the
ASR model. The output of this module is not text, as typical
for speech recognition, but phone sequences. We use Senten-
cePiece [6] to learn 100 unigram language model [7] subword
units from the phonemized training data transcriptions. Tran-
scriptions are phonemized using the IMS Toucan toolkit [8].
Label smoothing with a penalty of 0.1, as well as SpecAug-
ment [9] and 3-way speed perturbation [10] data augmentation
methods are utilized during training. The training is performed
with Adam optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8

and warmup learning rate scheduler with 40,000 steps. Batch
size is set to 10M bins resulting in the average batch size of
81 utterances. Gradients are accumulated for 8 steps before the
model update is performed. The initial model is trained on a
combination of train-clean-100 and train-other-500 subsets of



LibriTTS corpus [11] with the total duration of 363 hours. Vali-
dation data consisting of LibriSpeech [12] dev-clean and VCTK
[13] dev subsets with the total duration of 15 hours is used for
the early stopping and checkpoint selection. Learning objec-
tive coefficient γ is set to 0.6 and base learning rate is set to
0.005 during the initial training. The initial model is used to
label the whole VoxCeleb 1 and 2 corpora [14, 15, 16] and is
finetuned on the resulting labeled data combined with the orig-
inal LibriTTS train-clean-100 and train-other-500 subsets with
the total duration of 2954 hours. Learning objective coefficient
γ is set to 0.1 and base learning rate is set to 0.003 during the
finetuning. This process is repeated twice before the final ASR
model is obtained. Our intention is to expose the ASR model
to more diverse training data in order to make it more robust
to recording conditions, speaking styles and accents. This is
particularly important in a cascaded system because all ASR
errors are propagated to the TTS module. The Phone Error
Rate (PER) values on the LibriSpeech dev/test clean and VCTK
dev/test subsets are 6.5%/6.4% and 5.0%/9.4% for the initial
model, 6.3%/6.1% and 3.8%/8.4% after the first finetuning, and
6.2%/6.1% and 3.6%/8.3% for the final model (it should be
noted that the VCTK dev subset is used with non-normalized
transcriptions here). The effect of finetuning is more evident on
VCTK corpus and we link this to higher accent variability in
this dataset.

2.2. Speaker Embedding Extraction Module

We use two speaker embedding methods to extract the speaker
identity information from the recordings: x-vector [17] and
the more recent ECAPA-TDNN [18]. As presented by [2],
both vector types contain complementary information about the
speaker, and it is beneficial to use the concatenation of both in-
stead of just one of them for synthesis. Thus, we retrieve from
every recording one x-vector and one ECAPA-TDNN embed-
ding by applying the extractors provided by SpeechBrain [19]
which have been trained on VoxCeleb 1 and 2 [14, 15, 16]. The
resulting speaker embedding is then a concatenation of the 192d
ECAPA-TDNN vector and the 512d x-vector, resulting in 704
dimensions in total.

2.3. Speaker Embedding Anonymization Module

We train a Wasserstein GAN with Quadratic Transport Cost
(WGAN-QC) [20] to generate artificial speaker embeddings. It
consists of a generator and a discriminator. Unlike the classic
GAN [21] technique, the discriminator in a Wasserstein Gener-
ative Adversarial Network (WGAN) [22] is not optimized to-
wards distinguishing between between real and fake data but to
decrease the distance between real and fake distributions, and is
therefore called critic. This is achieved by training the critic to
compute the quadratic Wasserstein distance [20] between the
distributions, and by training the generator to minimize that
distance. The WGAN-QC furthermore includes the quadratic
transport cost to improve the convergence of the model. The
GAN is trained on the training subset of the clean-100 part of
LibriTTS.

Both the generator and the critic networks are simplified
versions of ResNet [23] as proposed to use by [20]. The ResNet
models are reduced in size to 150,000 parameters because of
the limited amount of data in the challenge. Input to the gen-
erator is a 16-dimensional random noise vector that is sampled
from a standard normal distribution N (0, 1). We experimented
with different sizes of z = 32 and z = 64. It then generates
a 704-dimensional vector that should be similar to any speaker

embedding extracted from the original data. This is then mea-
sured by the critic which computes the distance between the
generated vectors and the ones retrieved by the speaker em-
bedding extraction module. The important hyperparameter γ,
which balances the regression and regularization terms, is tuned
between 0.1 and 1. We train the model with a batch size of 128,
the Adam optimizer [24] with an initial learning rate of 5e− 5,
β1 = 0.5 and β2 = 0.999. We found that a γ = 1 and z = 16
slightly decrease the Word Error Rate (WER). For simplifica-
tion, we tested to exchange the ResNet models by a four layer
Multilayer Perceptron (MLP) that matches the number of train-
able parameters as generator and critic. However, this drasti-
cally decreases the performance of the system by a large mar-
gin and slows down the training and convergence process of the
WGAN.

We sample a new random vector z for every new voice that
we want to anonymize and make sure that its cosine similarity
to the original embedding of that speaker is smaller than 0.7 to
avoid unexpectedly sampling a too similar voice. Thus, for all
data during evaluation, we perform speaker-level anonymiza-
tion by sampling one generated embedding per speaker and us-
ing this for all utterances in that particular dataset split. This
leads to different anonymized voices for the same speaker in
the respective development and test data for trial and enrollment
utterances. For anonymizing the train-clean-360 dataset that is
used for training the evaluation models, we perform utterance-
level anonymization by sampling a new speaker embedding for
each utterance.

During this anonymization step, no information about the
actual speaker is maintained, not even the gender. We experi-
mented with training different GAN models for generating fe-
male and male voices but ran into issues with the lack of suf-
ficient data to train the models. Therefore, we apply only one
GAN for all voices regardless of the gender.

2.4. Speech Synthesis Module

The TTS module is implemented using the IMS Toucan toolkit
[8] and was trained on the clean-100 part of LibriTTS. It uses a
FastSpeech 2 [25] parallel synthesis approach for an emphasis
on robustness and speed. The encoder and decoder are build
according to the Conformer architecture [4]. The inputs, which
are the phonetic transcriptions as produced by our ASR mod-
ule, are transformed into articulatory feature vectors for synthe-
sis [26], to reduce the impact of near-misses in the ASR out-
put. Furthermore, this would help making the approach agnos-
tic of the phoneme set used if more languages than just English
were to be incorporated. The estimators for pitch and energy
are used as presented by FastSpeech 2 [25] with the averaging
of pitch and energy over the duration of a phoneme proposed
by FastPitch [27]. This enables fine-grained control over the
realizations of individual phonemes, as is shown in e.g. [28],
which would also further allow us to make an exact clone of the
prosody [29]. Because this however also makes the speech iden-
tifyable to an extend, we decided against using this approach in
our TTS module for now. Getting accurate measurements for
pitch and energy are very important with this approach. In pre-
liminary experimentation we found that the algorithms within
Praat [30] work best for extracting these values, which we
do using an open-source interface to Praat’s algorithms1. The
transformation from spectrograms to waveforms is performed
by a HiFi-GAN vocoder [31] and also implemented using the

1https://github.com/YannickJadoul/Parselmouth



Table 1: Primary privacy evaluation results for speaker verification, as EER in %, in comparison to the original data and all baselines.

Dataset Gender Weight Orig. B1.a B1.b B2 Our

LibriSpeech-dev female 0.25 8.67 17.76 19.03 11.36 44.60
male 0.25 1.24 6.37 5.59 1.40 43.63

VCTK-dev (different) female 0.20 2.86 12.46 8.25 6.68 51.04
male 0.20 1.44 9.33 6.01 6.35 50.97

VCTK-dev (common) female 0.05 2.62 13.95 9.01 5.81 51.16
male 0.05 1.43 13.11 9.40 8.83 51.57

Weighted average dev 3.54 11.74 9.93 6.53 47.60

LibriSpeech-test female 0.25 7.66 12.04 9.49 7.12 44.89
male 0.25 1.11 8.91 7.80 1.11 45.43

VCTK-test (different) female 0.20 4.89 16.00 10.91 16.92 49.02
male 0.20 2.07 10.05 7.52 7.69 49.54

VCTK-test (common) female 0.05 2.89 17.34 15.32 10.98 50.58
male 0.05 1.13 9.89 8.19 4.80 51.13

Weighted average test 3.79 11.81 9.18 7.77 47.38

IMS Toucan toolkit. To produce synthesized speech with dif-
ferent voices, the TTS has been conditioned and trained on the
same concatenated speaker embedding setup as the anonymiza-
tion module by concatenating the embeddings to the output of
the encoder, as [32] propose.

It should be noted that since the synthesis is based only on
the recognized transcription and the generated speaker embed-
ding, no acoustic or prosodic information is used from the orig-
inal audio. Thus, the resulting synthesized utterance will most
likely differ from the original one in terms of pitch, energy, and
speaking rate. However, due to punctuation and context, the es-
timated values especially of pitch are often relatively close to
the original ones. This issue will be addressed again regarding
the challenge evaluation in Section 3.3.

3. Results
3.1. Evaluation setup

The objective evaluation in the challenge is divided into pri-
mary and secondary, with two metrics in each category. The
first part of the primary evaluation consists in measuring the pri-
vacy of the approach by computing the Equal Error Rate (EER)
of an automatic speaker verification (ASV) attacker. Prior to
evaluation, the attack system is retrained on the train-clean-360
part of the LibriSpeech corpus that has been anonymized on
utterance-level by the same anonymization system as described
above, leading to a strong attacker. For the privacy metric, we
are aiming for EER scores close to 50% because this indicates a
random prediction behavior by the attacker. The second metric
in the primary evaluation is the WER in speech recognition as
utility metric. As we are using the evaluation suite of the chal-
lenge, this ASR model is different to the one embedded in our
anonymization system. However, similar to the ASV attacker,
the ASR model is also retrained on the anonymized train-clean-
360 data. Lower WER scores are better because they imply that
the anonymized speech retained the original linguistic content
with sufficient intelligibility.

In the secondary evaluation, the pitch correlation ρF0 and
Gain of Voice Distinctiveness (GVD) are assessed for further
utility of the system. The pitch correlation metric was intro-
duced to ensure that intonation is not completely lost during
anonymization. It measures the Pearson correlation between the
pitch sequences of the original and anonymized utterances. For
the challenge, a ρF0 > 0.3 must be reached for all datasets. The

GVD metric also compares original and anonymized utterances
but assesses their difference in terms of voice distinctiveness,
i.e., how well the voices of different speakers can be distin-
guished. A GVD score of zero denotes the same voice distinc-
tiveness in the anonymized as in the original data. Scores above
or below zero indicate a increased or decreased distinctiveness,
respectively. Thus, it is favorable to achieve a GVD either close
to zero or above in order to avoid losing the discriminability of
different voices in multi-speaker conversations.

For all metrics, we report the results of the baseline systems
of the challenge as given in [1] and the results of our system
for different datasets, as well as their weighted average over all
datasets. In all scenarios but the speech recognition, results for
female and male speakers are separated. For the primary evalua-
tion, the ASV and ASR scores on the original, non-anonymized
data are also presented.

3.2. Primary evaluation

The results of the primary privacy evaluation are presented
in Table 1. For all datasets, our system reaches scores close
to 50%, denoting almost perfect privacy. In contrast to this,
the performance of all baseline systems is significantly worse.
Our privacy results are close to the ones reported by [2] us-
ing the evaluation framework of the VoicePrivacy 2020 Chal-
lenge [33]. This suggests that this pipeline combined with the
GAN-generated speaker embeddings is robust against different
kinds of privacy attacks, even if the attacker has been trained on
anonymized data of the same anonymization technique.

Table 2: Primary utility evaluation results for speech recogni-
tion, as WER in %, in comparison to the original data and all
baselines.

Dataset Orig. B1.a B1.b B2 Our

LibriSpeech-dev 3.82 4.34 4.19 4.32 4.56
VCTK-dev 10.79 11.54 10.98 11.76 9.02
Average dev 7.31 7.94 7.59 8.04 6.79

LibriSpeech-test 4.15 4.75 4.43 4.58 4.53
VCTK-test (different) 12.82 11.82 10.69 13.48 7.81

Average test 8.49 8.29 7.56 9.03 6.17

The WER results of the primary utility evaluation are given
in Table 2. For LibriSpeech, our system achieves a similar low



Table 3: Secondary utility evaluation results for pitch correlation ρF0 , in comparison to the original data and all baselines.

Dataset Gender Weight B1.a B1.b B2 Our

LibriSpeech-dev female 0.25 0.77 0.84 0.64 0.36
male 0.25 0.73 0.76 0.53 0.34

VCTK-dev (different) female 0.20 0.84 0.87 0.70 0.40
male 0.20 0.78 0.76 0.59 0.39

VCTK-dev (common) female 0.05 0.79 0.84 0.64 0.31
male 0.05 0.72 0.72 0.54 0.31

Weighted average dev 0.77 0.80 0.61 0.37

LibriSpeech-test female 0.25 0.77 0.85 0.61 0.35
male 0.25 0.69 0.72 0.54 0.30

VCTK-test (different) female 0.20 0.84 0.87 0.68 0.42
male 0.20 0.79 0.77 0.66 0.39

VCTK-test (common) female 0.05 0.79 0.85 0.65 0.33
male 0.05 0.70 0.71 0.61 0.30

Weighted average test 0.77 0.80 0.62 0.36

WER as the baselines, which are all close to the intelligibility of
the original data. VCTK, on the other hand, is a more challeng-
ing dataset because its speakers use different English accents.
The anonymized speech of our system leads not only to a clear
reduction in WER as compared to the baselines but also to the
original data. This suggests that our approach eliminates the ac-
cent information in the recordings – which can give clues about
the identity of the speaker – and that the ASR module in our
pipeline is able to recognize the speech correctly regardless of
the accent.

3.3. Secondary evaluation

As a measure of preserved intonation, the pitch correlation
scores are shown in Table 3. Since we do not use the original
pitch in our system, our results on this metric are poor, although
meeting the requirement of 0.3 for all datasets. This poor per-
formance can be seen as a disadvantage of our approach. How-
ever, we argue that it is not advantageous to keep the original
pitch because this can reveal the identity of the original speaker.
By reaching the required threshold, we show that the pitch esti-
mation in our approach is good enough to approximate the pitch
of the original recording without copying the speaker-specific
prosody style. The reason why we meet the required thresh-
old although not using the original pitch lies in the design of
our ASR and TTS models: Since the ASR module is trained on
LibriTTS, its outputs contain punctuation which gives impor-
tant clues about the intonation of the original utterance. Using
this information together with the context of the utterance in-
cluding the (phonemized) word order, the pitch estimator in the
TTS module generates an intonation pattern that is close to how
the original speaker probably pronounced the utterance. This
process is facilitated by the fact that the evaluation data con-
tains only standard speech without much variation.

The results of the gain of voice distinctiveness metric are
given in Table 4. A GVD score close to zero denotes a similar
voice distinctiveness as in the original data, which our approach
almost completely fulfills. As the baseline systems achieve
smaller scores further away from zero, we show that our GAN-
based speaker embeddings lead to more distinguishable voices
which we believe are due to them being sampled from a natural-
like embedding distribution. In fact, [2] show that generating
speaker embeddings that match original ones in terms of value
ranges is important for the TTS system in order to produce dif-
ferent voices for different input embeddings.

4. Conclusion
For the VoicePrivacy 2022 Challenge, we proposed a system
that reduces the original speech to the linguistic content before
synthesizing it back to audio with an artificial voice created by a
Generative Adversarial Network. This method effectively elim-
inates all information about the original speaker identity and
thus successfully anonymizes it, while keeping the content and
intelligibility of the recorded speech. Regarding the primary
privacy evaluation, we clearly outperform all baseline systems,
achieving almost perfect anonymization. In the primary utility
metric, measured by speech recognition, our results are similar
to the baselines on LibriSpeech and distinctly better on VCTK.
For VCTK which contains utterances in different English ac-
cents, we even significantly outperform the speech recognition
results on the original, non-anonymized speech, suggesting that
the accent of the original speaker is hidden in the anonymized
utterance. In the secondary evaluation, we show that we, con-
trary to the baselines, keep almost the same voice distinctive-
ness as in the original data. The only metric for which our
system produces worse results is the pitch correlation. We ex-
plicitly do not keep the pitch of the original voice recording
because this reveals information about the speaker, making the
anonymization less effective. Instead, we use a smart pitch esti-
mation method for generating a sensible pitch trajectory for the
transcribed speech which matches the original pitch enough for
fulfilling the pitch correlation requirement.
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