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Our Idea

Main problems of challenge baselines:
B1.a and B1.b: Usage of pitch and BN features → identity leakage
B2: Simple signal processing → not robust against neural attackers

Our approach: Based on B1 pipeline but
Phonetic Speech Recognition

Reduction of speech to linguistic content; designed for optimal
interaction with TTS

Speaker Embedding Anonymization via GAN
Generates artificial yet natural-like voices

Multispeaker Speech Synthesis
Optimized to produce distinctive voices based on speaker embedding

→ No usage of original pitch but instead smart pitch estimation
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Components: Speech Recognition

Hybrid CTC/attention architecture [1] with Conformer encoder and
Transformer decoder
Implemented in ESPnet2 toolkit [2]
Output: phone sequences
Training transcriptions phonemized by IMS Toucan toolkit [3]
Trained on LibriTTS [4]
→ used to label VoxCeleb corpora [5]
→ finetuned on VoxCeleb + LibriTTS
→ repeated 2x
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Components: GAN Speaker Anonymization

Embeddings: Concatenation of x-vector [6] and ECAPA-TDNN [7] (704
dimensions)
→ extracted with SpeechBrain [8]
Wasserstein Generative Adversarial Network with Quadratic Transport Cost
[9] to generate artificial embeddings

Generator: transforms noise into 704-dimensional vector
Critic: distinguishes between real and fake data distributions

During training: utterance-level speaker embeddings
During inference: one embedding per speaker (exception: training data for
eval models)
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Components: Speech Synthesis

FastSpeech2 synthesis [10] (phones → spectrograms) + HiFiGAN vocoder
[11] (spectrogram → waveforms)
Implemented in IMS Toucan toolkit
Conversion of phone input into articulatory features
Pitch and energy estimators based on FastSpeech2 and FastPitch [12]
Training conditioned on concatenated speaker embeddings to produce
different voices
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Results: Primary Evaluation

Orig B1.a B1.b B2 Our
0

10
20
30
40
50

EE
R
%

Privacy: ASV

Dev
Test

Regardless of the strong attacker:
almost perfect privacy

Orig B1.a B1.b B2 Our
0
2
4
6
8

W
ER

%

Utility: ASR

Best ASR results, even better than
for original data
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from 12.82 to 7.81
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Results: Secondary Evaluation
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The Low Correlation of Pitch

Our system does not keep the original pitch sequences
→ low pitch correlation scores
This is deliberate:

Pitch contains too much speaker-identifiable information
Best for the system to have no information about the original
prosodyabout specific values of the original prosody

We actually do include prosodic information... in our transcriptions
ASR is trained on LibriTTS: outputs punctuation
The context and phonemized word order gives hints about intonation

→ The energy and pitch estimation based on that works pretty well!
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Conclusion

Our system: A speaker anonymization pipeline with ...
Phonetic ASR transcriptions
GAN-generated artificial but natural-like anonymous speaker embeddings
Multispeaker TTS with smart pitch estimation

Highly outperform all baselines in 3 of 4 metrics:
Almost perfect privacy against strong attacker
Better intelligibility even than original VCTK data
Same voice distinctiveness as original data

Deliberately without keeping pitch information to reduce identity leakage
→ nonetheless quite matching intonation
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