NWPU-ASLP System for the VoicePrivacy 2022 Challenge

Jixun Yao, Qing Wang, Li Zhang, Pengcheng Guo, Yuhao Liang, Lei Xie

Audio, Speech and Language Processing Group (ASLP@NPU), School of Computer Science, Northwestern Polytechnical University, Xi'an, China http://www.npu-aslp.org

- Speech data are proliferating exponentially *
- Applications record personal speech data * which have rick to be stolen by attacker

Telecommunication

Voice Pay

Virtual Assistants

• • •

Speech Information *

Speech data contain rich personal • sensitive information

Speech Data

Other sensitive attributes

How to protect the personal speech data \checkmark

- Cryptography: may be hacked *
- Anonymization: the hiding of speaker identity *

VoicePrivacy challenge

Provide metrics, protocols, benchmarks and evaluation datasets *

VoicePrivacy baseline anonymization system

https://www.voiceprivacychallenge.org/

Our method -- Different from the baseline system \checkmark

- Our system **DOES NOT** involve additional ASV models or an x-vectors pool *
- Also reduce the risk of insufficient generalization of the ASV model and the complexity of anonymization * computation

ASV-model-free approach for speaker anonymization

- Look-up-table (LUT) for speakers in training set as speaker pool *
- Reserve a pseudo speaker ID in LUT to generate pseudo speaker embedding *
- Average the randomly selected speaker embeddings in LUT *
- Pseudo speaker embedding + Averaged embedding \rightarrow anonymized embedding *

- Compare with the baseline system
 - Our work focuses on the anonymization module

	Baseline system	Our system
(1)	orign F0 extractor	YIN algorithm
(2)	Kaldi PPG extractor	WeNet tools
(3)	X-vector	look-up table + speaker encoder
(4)	average candidate speaker vectors	combine two types of speaker embedding
(5)	SS AM	CBHGAR
(6)	NFS model	our modified version of HifiGAN

VoicePrivacy baseline anonymization system

Proposed method

System overview

Our anonymization system consists of

four modules:

- (a) Feature extractor
- (b) Acoustic model (AM)
- (c) Anonymization module
- (d) Vocoder
- Anonymization process in three steps
 - Extract F0, PPG and Speaker ID
 - Predict anonymized mel-spectrogram
 - Reconstruct mel-spectrogram to anonymized speech

Proposed method

Anonymization strategy

Averaged embedding

 Average the randomly selected K speaker embeddings

Pseudo embedding

generated by pseudo Speaker ID

Anonymized embedding

- weighted concatenation with averaged embedding and pseudo embedding
- * anonymized embedding = α * averaged embedding $\bigoplus \beta$ * pseudo embedding

 α and β are hyperparameters

10

spkidspk name1Speaker 12Speaker 2......1407Speaker 14071408Pseudo Speaker

Look-Up Table (LUT)

Evaluations

Dataset

- Our proposed system follows VoicePrivacy 2022 Challenge data configuration *
- LibriSpeech-test-clean and VCTK-test for ASR and ASV evaluation tasks **

nt	LibriSpeech	Enrollment	15	14	29
mei	dev-clean	Trial	20	20	40
Ido		Enrollment			
vel	VCTK-dev	Trial (different)	15	15	30
De		Trial (common)			
ц	LibriSpeech	Enrollment	16	13	29
tio	test-clean	Trial	20	20	40
lua		Enrollment			
va	VCTK-test	Trial (different)	15	15	30
		Trial (common)			

Number of speakers and utterances in the development and evaluation sets

343
1,978
600
10,677
695
438
1,496
600
 10,748
700

Results

Primary EER results *

- Our approach leads to a notable increase in average EER of up to 18.34% compared with B1.a and 20.97% compared with B1.b
- Different genders perform similarly in our approach, as compared with significant * difference in baseline systems

Dataset	Gender	Weight	Orig	B1.a	B1.b	Condition1	Condition2	Condition3	Condition4
LibriCrassh day	female	0.25	8.67	17.76	19.03	13.92	21.02	25.28	26.28
Librispeech-dev	male	0.25	1.24	6.37	5.59	15.53	19.57	22.05	23.45
VCTV day (diff)	female	0.20	2.86	12.46	8.25	18.36	29.14	38.80	40.31
VCIK-dev (dill)	male	0.20	1.44	9.33	6.01	22.28	31.46	36.92	37.77
VCTV day (aamm)	female	0.05	2.62	13.95	9.01	19.19	26.45	34.59	35.76
VCIK-dev (comm)	male	0.05	1.43	13.11	9.40	21.37	29.91	37.04	37.89
Weighted av	erage dev		3.54	11.74	9.93	17.51	25.08	30.55	31.73
Librignooch tast	female	0.25	7.66	12.04	9.49	16.61	17.88	20.99	22.08
Librispeech-lest	male	0.25	1.11	8.91	7.80	10.69	14.03	17.37	19.15
VCTV tost (diff)	female	0.20	4.89	16.00	10.91	23.10	34.83	40.84	40.64
VCIK-lest (ulli)	male	0.20	2.07	10.05	7.52	23.19	30.20	37.54	38.81
VCTV tast (aamm)	female	0.05	2.89	17.34	15.32	23.99	34.68	40.46	40.46
VCIK-test (comm)	male	0.05	1.13	9.89	8.19	23.16	32.20	38.14	38.70
Weighted av	verage test	i i	3.79	11.81	9.18	18.44	24.32	29.19	30.15

Table 2: Privacy results on different conditions. EER achieved by ASV_{eval}^{anon} on data processed by our anonymization method vs. EER achieved by baseline B1.a or B1.b and original(Orig).

Results

Primary WER results *

- Lowest WER *
 - Librispeech-test: 3.84% *
 - VCTK-test:7.81% **
- Absolute WER Reduction *
 - 2.47% over B1.a *
 - 1.74% over B1.b *
- We match all the 4 EER conditions with * WER substantially lower than baseline

Dataset	
LibriSpeech-dev	
VCTK-dev	1
Average dev	
LibriSpeech-test	
VCTK-test	
Average test	

Table 3: Primary utility evaluation: WER achieved by ASR^{anon} on data processed by our anonymization method (with the large LM). C* denotes different target EER conditions

Orig	B1.a	B1.b	C1	C2	C3	C4
3.82	4.34	4.19	3.91	3.71	3.65	3.65
10.79	11.54	10.98	8.10	7.73	7.68	7.62
7.31	7.94	7.59	6.00	5.72	5.66	5.63
4.15	4.75	4.43	3.96	3.98	3.84	3.87
12.82	11.82	10.69	8.37	7.85	7.81	7.85
8.49	8.29	7.56	6.16	5.91	5.82	5.86

Results

Secondary primary evaluation •

- The highest pitch correlation is achieved in c1 of 0.7 and exceeds the minimum threshold *
- But the voice distinctiveness gets worse as the EER rises *

Table 4:	Secondary	utility	evaluatio	n: p	itch o	correlation	$\rho F0$
achieved	on data pro	cessed	by Bl.a,	B1.b	and	our anonym	nized
results.							

Dataset	Gender	B1.a	B1.b	C1	C2	C3	C4
LibriSpeech-dev	female	0.77	0.84	0.70	0.71	0.71	0.71
Librispeech-dev	male	0.73	0.76	0.69	0.69	0.69	0.69
VCTK day (dif)	female	0.84	0.87	0.76	0.76	0.77	0.76
VCTK-dev (dil)	male	0.78	0.76	0.71	0.71	0.71	0.71
VCTK-dev (com)	female	0.79	0.84	0.71	0.71	0.72	0.71
VCIK-dev (com)	male	0.72	0.72	0.67	0.67	0.67	0.67
Weighted average dev		0.77	0.80	0.71	0.71	0.72	0.72
LibriCnaach taat	female	0.77	0.85	0.71	0.72	0.72	0.72
Libitspeech-test	male	0.69	0.72	0.64	0.64	0.64	0.64
VCTK_test (dif)	female	0.87	0.87	0.77	0.76	0.77	0.77
VCTR-test (ull)	male	0.79	0.77	0.71	0.71	0.71	0.71
VCTK-test (com)	female	0.79	0.85	0.72	0.71	0.72	0.72
verk-test (com)	male	0.70	0.71	0.64	0.65	0.65	0.65
Weighted average	ge test	0.77	0.80	0.70	0.70	0.71	0.70

anonymized results.

Dataset	Gender	B1.a	B1.b	C1	C2	C3	C4
LibeiCeanab day	female	-9.15	-4.92	-2.94	-10.50	-17.47	-21.35
Librispeech-dev	male	-8.94	-6.38	-2.69	-9.18	-15.78	-18.66
VCTV day (dif)	female	-8.82	-5.94	-2.38	-8.33	-12.19	-13.96
VCIK-dev (dil)	male	-12.61	-9.38	-3.10	-10.68	-17.25	-20.72
VCTK day (com)	female	-7.56	-4.17	-1.98	-6.72	-13.33	-17.18
VCIK-dev (colli)	male	-10.37	-6.99	-2.06	-7.70	- <mark>14.</mark> 81	-19.71
Weighted avera	ge dev	-9.71	-6.44	-2.71	-9.442	-15.61	-18.86
LibeiCassak taat	female	-10.04	-5.00	-2.72	-9.21	-16.44	-20.13
Lionspeen-test	male	- <mark>9.0</mark> 1	-6.64	-1.64	-7.36	-13.90	-17.83
VCTK tast (dif)	female	-10.29	-6.09	-2.82	-9.18	-15.41	-17.86
VCIK-test (dif)	male	-11.69	-8.64	-3.85	-10.77	-15.82	-17.65
VCTV test (see)	female	-9.31	-5.10	-2.15	-8.12	-15.55	-20.39
vCIK-lest (com)	male	-10.43	-6.50	-2.68	-9.43	-16.78	-21.26
Weighted avera	ge test	-10.15	-6.44	-2.67	-9.012	-15.46	-18.69

Table 5: Secondary utility evaluation: gain of voice distinctiveness G_{VD} achieved on data processed by B1.a, B1.b and our

Conclusions

- NWPU-ASLP anonymization system for VoicePrivacy2022 Challenge
 - Highlight: an ASV-model-free anonymization strategy •

- Our anonymization strategy can meet all conditions by adjusting the weight h-param
 - WER substantially lower than baseline •

Jixun Yao Audio, Speech & Language Processing Group (ASLP@NPU)

www.npu-aslp.org

Thank You!

