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Introduction

Background
▶ With the widespread application of web pages and mobile apps,

privacy in processing and storing data has also attracted great
attention.

▶ Although no clear privacy law is established, the security of
speech data has received many concerns from researchers.

▶ Therefore, different solutions have been proposed to protect
the speaker’s privacy, and one of the main approaches is
speaker anonymization.



Speaker anonymization
▶ Speaker anonymization technology, also known as speaker

de-identification, aims to suppress speaker identity information
in the speech signal.

▶ Specifically, according to the VoicePrivacy 2022 Challenge [1],
the speaker anonymity system needs to satisfy: (i) output a
speech waveform, (ii) conceal the speaker identity, (iii) the
linguistic content and paralinguistic attributes should be
preserved, and (iv) ensure a one-to-one correspondence
between speakers and pseudo-speakers.



Previous work
▶ [2] proposed an anonymization method, which modified the

x-vectors by selecting an x-vector from an x-vector pool as the
pseudo-x-vector.

▶ This method is the first baseline system in the VoicePrivacy
2022 Challenge.

▶ Inspired by our previous work[3, 4, 5], this paper proposes two
modifications to improve the x-vector-based baseline: (i)
adding the adversarial noise and (ii) eliminating speaker
information in a transformer-based ASR system.



Proposed Method
This section discusses the proposed methods in which we modify the
x-vector based on the baseline system [2].
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Figure 1: The flowchart of the proposed method (first approach).
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Figure 2: The flowchart of the proposed method (second approach).



The first approach is based on the concept of adversarial
perturbation.

▶ The essence of the idea of adversarial perturbation is consistent
with the idea that we want to modify the speaker
anonymization method based on the x-vector.

▶ Therefore, we use the method of adding perturbation to
anonymize the speaker.

▶ As shown in Fig.1, we proposed a new anonymization method
based on adversarial perturbation.



The process of our proposed adversarial anonymization method can
be formulated as follows:

Yi = Xi + noiseadv

where the Xi denotes the original x-vectors of speaker i , and the
anonymized x-vector of speaker i is Yi . Considering the amount of
computation required in the anonymization process, we borrow the
method of non-targeted attack. In other words, adding the
adversarial noise (noiseadv ) to create a fake speaker and hide the
original speaker’s identity.



Figure 2 shows the second method of our anonymization systems.
The detail information is described as follow:
▶ In [6, 3], it is shown that the output of the acoustic features by

the encoder of the transformer can effectively show the
classification characteristics of the speaker.

▶ Therefore, to some degree, the ASR embedding can represent
speaker identity.

▶ And we replace the X-vector extractor in baseline with the
transformer-based ASR system.



Fig.3 shows the flowchart for extracting embedding.
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Figure 3: Proposed method to extract embedding of target Speaker



Experiments

Datasets
All datasets used in this experiment were based on the VoicePrivacy
2022 Challenge [1].

Table 1: Number of speaker and utterances in the development and
evaluation sets

Dataset Female Male Total
Train. Librispeech-train-clean-360 430 482 921

Librispeech Enrollment 15 14 29
Trial 20 20 40

Dev. Enrollment

&Eval. VCTK
Trial(different) 15 15 30
Trial(common)



Experimental Setups
▶ The main part of our experiment was conducted as same as the

baseline 1.a in VoicePrivacy 2022 Challenge;
▶ We adopted the transformer-based speech recognition model

(ASRspk);
▶ The ASRspk model required for embedding extraction is trained

on the Librispeech train-clean-100 but based on the
multitasking training method following [6, 7] with the
speaker-id and label.



For the evaluation, attackers were assumed to have access to the
un-anonymized speech and anonymized speech utterances.
Therefore, there are three attack scenarios:

▶ One or more anonymized trial utterances are exposed to the
attacker;

▶ Original or anonymized enrollment utterances for each speaker
are available to the attacker;

▶ Anonymized training data, which can retrain an ASV system,
can be accessed by the attacker.



Results
Table 2: Primary privacy evaluation: EER% achieved by ASV anon

eval on data
processed by Baseline, Model 1, or Model 2 vs. EER achieved by ASVeval
on the original (Orig.) unprocessed data

Dataset Gender Weight EER%
Orig. Baseline Model 1 Model 2

LibriSpeech-dev fmale 0.25 8.67 17.76 30.40 20.45
male 0.25 1.24 6.37 12.58 13.35

VCTK-dev(different) fmale 0.20 2.86 12.46 23.98 12.97
male 0.20 1.44 9.33 16.77 9.23

VCTK-dev(common) fmale 0.05 2.62 13.95 25.00 11.05
male 0.05 1.43 13.11 13.11 11.97

Weighted average dev 3.54 11.74 20.80 13.17

LibriSpeech-test fmale 0.25 7.66 12.04 18.25 14.78
male 0.25 1.11 8.91 20.04 11.14

VCTK-test(different) fmale 0.20 7.66 12.04 24.85 17.18
male 0.20 1.11 8.91 15.84 15.90

VCTK-test(common) fmale 0.05 2.89 17.34 19.36 13.83
male 0.05 1.13 9.89 17.23 11.58

Weighted average dev 3.79 11.81 19.54 14.07



Results
Table 3: Pitch correlation ρF0 and gain of voice distinctiveness GVD
achieved on data processed by Baseline, Model 1, or Model 2.

Dataset Gender Weight ρF0 GVD
Baseline Model 1 Model 2 Baseline Model 1 Model 2

LibriSpeech-dev female 0.25 0.77 0.83 0.81 -9.15 -7.24 -12.93
male 0.25 0.73 0.79 0.72 -8.94 -6.88 -11.47

VCTK-dev(different) female 0.20 0.84 0.87 0.85 -8.82 -8.02 -9.65
male 0.20 0.78 0.79 0.69 -12.61 -11.12 -11.08

VCTK-dev(common) female 0.05 0.79 0.85 0.83 -7.56 -5.43 -6.82
male 0.05 0.72 0.77 0.66 -10.37 -7.64 -8.05

Weighted average dev 0.77 0.82 0.77 -9.71 -8.01 -10.99

LibriSpeech-test female 0.25 0.77 0.85 0.82 -10.04 -6.12 -12.17
male 0.25 0.69 0.74 0.67 -9.01 -6.36 -10.79

VCTK-test(different) female 0.20 0.84 0.87 0.85 -10.29 -9.56 -11.78
male 0.20 0.79 0.80 0.69 -11.69 -10.43 -11.79

VCTK-test(common) female 0.05 0.79 0.85 0.84 -9.31 -7.51 -10.57
male 0.05 0.70 0.75 0.65 -10.43 -6.47 -8.88



Table 4: WER(%) obtained by ASReval and ASRanon
eval model

Libri. VCTK
Anony. system Dev. Test Dev. Test
Ground Truth 3.82 4.15 10.79 12.82
Base. 4.34 4.75 11.54 12.82
Model 1 4.57 4.90 12.74 13.40
Model 2 4.61 4.79 12.15 12.86

▶ Table 4 shows that the ability of the proposed anonymization
system to preserve linguistic information is no less weak than
the baseline system;

▶ The results show that the speech content after proposed
anonymity has relatively complete preservation;

▶ Moreover, our proposed M2 system has simplified the pipeline
of baseline system.



Conclusions

▶ In summary, we test two methods to protect speaker privacy.

▶ Moreover, we extract speaker embedding from the End-to-End
ASR system.

▶ Experimental results prove that both methods can be used for
speaker anonymization tasks.
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