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Introduction: aim /

Promote the development of privacy preservation tools for speech technology
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Introduction: privacy preservation for speech /

® Deletion

® Encryption
® Distributed learning

® Anonymization —
@

©)

O O O O

noise addition

speech transformation v suppress persopally identifiable information
. . in the speech signal

VOICE conversion v keep unchanged all other characteristics

speech synthesis « linguistic content

adversarial learning » speech quality/naturalness
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Anonymization task

Privacy preservation is formulated as a game between
users (publish some data) & attackers (access this data or data derived from it
and wish to infer information about the users)

Using data in downstream tasks: Maximize:

—) L Utility for
*  human communication

automated processing users
model training

original data

anonymized data

¢ -|||||-|-

' seudo-s eaker
Speaker Uco-Spe:
\\//
f ch_essred/da(::a: Minimize:

» a few original or/an
> BN mmmm=  Speaker identification Personally

Prior knowledge: _Idfentlflatl?le
» previously published data ) iInrormation
* privacy preservation method Attacker / Adversary:

human or ASV
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Anonymization task

Privacy preservation is formulated as a game between
users (publish some data) & attackers (access this data or data derived from it
and wish to infer information about the users)

Using data in downstream tasks: Maximize:

i Utility for
anonymized data | p—m «  human communication useyrs
&2 1|1--Anonymized trial - aUtgn?attefj processing
; \ model training
Pseudo-speaker
Speaker Uco-Spe:
\\//
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Privacy

ASV,,., Automatic speaker verification system

Objective speaker verifiability:

Equal error rate | EER — Pr(6eer) = ijSS(BEER)]

Objective evaluation: privacy and utility metrics

Vs

Log-likelihood-ratio S icwrlogs (1+ e LLR:) 3.0 log, (1 + M)
+

cost function lir 2N

A

2 Nimp

|

Discrimination loss | Cjfin

Utility

ASR_,.,, Automatic speech recognition system

Nsub + Ndel + Nins
Nref

Word error rate | WER =

Training set for ASV,,, & ASR,,: LibriSpeech-360-clean, original data
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Objective evaluation: automatic speaker verification (ASV,,.)

Test trials Privacy ; metrics Enrollment
00 EER, Cllr' Clrﬁ.m
~
g ASVevaI ) l“‘“l"‘ “ '“““”l |||
original

“1 N‘\M‘M
origina
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Objective evaluation: automatic speaker verification (ASV,,.)

Test trials Privacy , metrics Enrollment

00| EER, Cy,, CD

7N

A\ 4

“1 ’“WWMW
origina

ASVevaI

A

o

Pseudo-speaker

°©2 }“MWM»«\M»— Anonymization —2 —

anonymized

| original
I
oa|EER, Gy, CI™
72N
ASVevaI :
' origina
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Objective evaluation: automatic speaker verification (ASV,,.)

Test trials Privacy ; metrics Enrollment
00| EER, Cllr' Clrﬁ.m
oS
°1 o ASV 4 I
origina : original
I
min
Pseudo-speaker < EER, Cur, Ciiy
ZoN
) Anonymization — ASVeval <
anonymized : origina
|
Pseudo-speaker 1 aa| EER, CEF}’ Clrflrm Pseudo-speaker 2
° 3 Anonymization |—4 — Asveval — ﬁAnonymization
anonymized | anonymized
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Objective evaluation: automatic speech recognition (ASR., )

. 1
Test trials Utility !metrics

o WER
>

° 1 " ASReya

original :

~
° 9 N‘\MWF Anonymization A}“MWMMW'— ASReval

anonymized |
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ASR+TTS —is it a good solution? /

‘ .|||||-|. ‘ ASR ‘ ‘ TTS ‘ .|||||.|.

Synthesized
speech

Speaker Text




ASR+TTS —is it a good solution? /

b -|||||-|.~ ASR mmm) ‘ TTS ~.||I||.|.

. Synthesized
.**"  speech

Spea ker Text

Remove speaker identity? vyes

Keep unchanged all other characteristics (i. e. prosody, emotions,...)?
Preserve linguistic content?

Diversity and distinguishability of synthesized voices?
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ASR+TTS —is it a good solution? /

f‘; -|||||-|.~ ASR mmm) ‘ TTS ~.||I||.|.

. Synthesized
.**"  speech
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ASR+TTS —is it a good solution? /

f‘; -|||||-|.~ ASR mmm) ‘ TTS ~.||I||.|.

. Synthesized
.**"  speech

Spea ker Text

Remove speaker identity? vyes

Keep unchanged all other characteristics (i. e. prosody, emotions,...)? no
Preserve linguistic content? yes, but not perfectly due to ASR errors
Diversity and distinguishability of synthesized voices? limited

VoicePrivacy



Datasets

Training T (s

VoxCeleb-1,2 7363 2794

LibriSpeech: -train-clean-100 251 100
-train-other-500 1166 497

LibriTTS: -train-clean-100 247 54

-train-other-500 1160

Development

LibriSpeech: -dev-clean 1348 27362
VCTK-dev: -common 30 695 9721
VCTK-dev: -different 3796 26204
LibriSpeech: -test-clean 20653
VCTK-test: -common 30 700 9790
VCTK-test: -different 3686 2

VoicePrivacy



Baseline 1

Input speech

FO
extractor

ASR AM

X-vector
extractor

FO

BN features

SS AM

Y

Mel-fbanks NSE

1

model

3

X-vector

A 4

Anonymizaton

Anonymized
x-vector

F 3

Pool of x-vectors

L\
‘@\.
[ —

Anonymization using x-vectors and neural waveform models

Anonymized
speech

ASR AM: Automatic speech recognition acoustic model (to extract BN (bottle-neck) features)
SS AM: Speech synthesis acoustic model

NSF: Neural source-filter model

https://github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-2020

VoicePrivacy

Inspired from: [Fang 2019]


https://github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-2020

Input speech

Baseline 1

FO
extractor

Anonymization using x-vectors and neural waveform models

FO

ASR AM

A 4 Y

BN features Mel-fbanks
o SSAM o NSF

X-vector
extractor

model

1 [y

Anonymized

X-vector

A 4

Anonymizaton

X-vector

F 9

Pool of x-vectors

@ \J
‘@{'
[ ==

1. Choose N x-vectors farthest from
the original one (PLDA/cosine)

2. Choose N* < N randomly from them

3. Average N* x-vectors to obtain an
anonymized x-vector

Anonymized
speech

Pool of x-vectors

®
000 ®
0
anonymized
@ x-vector

original x-vector ® [ )
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Baseline 2 Anonymization using McAdams coefficient /

v Simple to apply anonymization

poles (Im==0) v No training data is required
R | LPC poles
1 Coefficients —— to to
""__T__"' poles LPC
R : - poles (Im~=0) g T ;\‘ TTTT oo (:I ‘:
| Speech frame — . _ [0 Resynthesis __,, Ahonymized
| , analysis gb : speech frame |
- T 99 D AR . e |
QT -L ==
i Residuals

The angle ¢ of poles with a non-zero imaginary part are raised to the power of the
McAdams coefficient @ to provoke a shift in frequency of its associated formant.

« LPC: linear predictive coding

https://github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-2020 [McAdams 1984] [Patino 2020]

: . ' VoicePrivacy 19
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Participants

Registered teams: 25 (more than 45 participants) from 13
countries

Teams submitted valid results: 7 (+1 contribution related to
evaluation models)

o deadline-1: submissions from 6 teams
O deadline-2: submissions from 2 teams

Both

Non-academic

Submitted anonymization systems: 16

Academic

Post-evaluation analysis (submission of the anonymized
dataset for training evaluation models): 4

VoicePrivacy

Team Country Status
Idiap-NKI Switzerland academic
Biometric Vox Spain non-academic
DA-IICT Speech Group India academic
Team SDU Turkey academic
PingAn USA non-academic
AlS-lab JAIST Japan / Thailand |academic
BlackBox@CMU USA academic
Motorola Solutions USA non-academic
MultiSpeech France academic
Orange ITAAC Team France non-academic
Oxford System Security Lab |UK academic
Preech USA academic
Sigma Technologies S.L.U. |Spain both

T™U Japan academic
loenix USA non-academic
VTouch China academic
VIAX China academic
PhoneClearly.com USA non-academic
Kyoto Team Japan academic
PSUT Jordan academic
TJU-VP China academic




Participants’ systems

Team Team notation System Deadline | System notation
primary 1 A1
AlS-lab JAIST A .
primary 2 A2
DA-IICTSpeechGroup D primary 1 D1
Idiap-NKI I primary 1 "
Kyoto Team K primary 2 K2
primary 1 M1
contrastive 1 1 M1c1
MultiSpeech M contrastive 2 1 M1c2
contrastive 3 1 M1c3
contrastive 4 1 M1c4
. primary 1 (o)
OxfordSystemSecurityLab 0 -
contrastive 1 1 O1c1
primary 1 S1
. . contrastive 1 1 S1c1
Sigma_Technologies SLU S .
primary 2 S2
contrastive 1 2 S2c1
baseline-1 - B1
baseline-2 - B2

VoicePrivacy




ATR  INTERSPEECH

SHANGHAL

Just

.
NecTec!

X-VECTOR SINGULAR VALUE MODIFICATION AND STATISTICAL-BASED
DECOMPOSITION WITH ENSEMBLE REGRESSION MODELING FOR
SPEAKER ANONYMIZATION SYSTEM

Candy Olivia Mawalim', Kasorn Galajic'2, Jessada Karnjana?, Masashi Unokd!

Special Session: The VoicePrivacy Challenge 2020

)

S 16 M A FTIZNN

ARTHICIAL INTELLIGENCE

Speaker De-identification System
using Autoencoders and
Adversarial Training

Participants’ systems

A
NATIONAL CONVENTION CENTER

Fernando M. Espinoza-Cuadros'?, Juan M. Perero-Codosero'?, Javier in'?, Luis A. Her

sigma Technologies SLU
2GAPS Signal Processing Group, Uni i de Madrid

OCTOBER 2020 VOICEPRIVACY CHAL

https://www.voicepriv;cychaIIenge.org/

oicePrivacy

Speaker Anonymization with
Distribution-Preserving X-Vector
Generation

Henry Turner, Giulio Lovisotto and Ivan Martinovic
henxumercs.ox.ac.uk

University of Oxford, UK

OXFORD

VoicePrivacy 2020 Challenge - full video

Speaker information modification in
the VoicePrivacy 2020 toolchain

Pierre Champion’, Denis Jouvet', Anthony Larcher?

'WUniversité de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

2Le Mans Université, LIUM, France

6:1,7[4__ Ziloria

Jel0I30

cPFL

Adjustable Deterministic
Pseudonymisation of Speech

NETHE

Idiap-NKI's Submission to VoicePrivacy 2020 Cha

STIFTUNG

Atos

i

Voice-Indistinguishability

System Description
for Voice Privacy Challenge

Yaowei Han, Sheng Li, Yang Cao, Masatoshi Yoshikawa (Kyoto Team)
Department of Social Informatics, Kyoto University, Kyoto, Japan
National Institute of Information and Communications Technology, Kyoto, Japan




Participants’ systems

@

FO

FO
extractor
9 X-vector
extractor

BN features

Mel-fbanks @ NSF
S5 AM .IH |"|<‘{|\p.p...
@ i .

x-vector speech

H

Input speech

—

Pool of x-vectors

£on

C ) PLIO ed a3 =
@ Data
A2 B1: x-vector anonymization using singular value modification + e e
LibriTTS-train-other-500
LibriTTS train-clean-100
B1: x-vector anonymization keeping original distribution of cosine
* O1 distances between speaker x-vectors; GMM for sampling vectors in a + Speak "
PCA-reduced space with the following reconstruction to the fake x- Li?)?ii‘ﬁsr-?;?n'-other-soo
vectors of the original dimension VoxCeleb-1.2
0O1c1 |01: with forced dissimilarity between original and generated x-vectors +
* S§2 S2c1: applied on the top of the B1 x-vector anonymization +
B1: x-vector anonymization using domain-adversarial training,
S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding +
to adversarial branches in ANN for x-vector reconstruction
* M1 B1: ASR part to extract BN features for SS models (E2E ASR for BNs)
B1: ASR part to extract BN features for SS models (E2E ASR for BNs;
M1c1 [semi-adversarial training to learn linguistic features while masking
speaker information)
M1c2 [B1: copy-synthesis (original x-vectors
py-sy! g
M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to
NSF are original
Mica B1: x-vectors provided to SS AM are original, x-vectors provided to +
NSF are anonymized
y//¥V/7/7V/V—V—V—/ V0
* K2 anonymization using x-vectors and SS models: Voice-Indistinguishability metric; a waveform vocoder Speaker pool:
based on Griffin-Lim algorithm test set itself
D1 B2: additional modifications in pole radius
11 modifications in formants, FO and speaking rate

VoicePrivacy

+ Modifications in Bl

* Teams submitted additional anonymized
speech data for post-evaluation analysis




Related to Bl

Participants’ systems

System Description Modified components / data in B1
D2|®@BOD Data
A2 B1: x-vector anonymization using singular value modification + + e e
LihriTT S train-nthar.500
FO Fo
B1: x-vector anonymization keeping original distribution of cosine e
01 distances between speaker x-vectors; GMM for sampling vectors in a (\
PCA-reduced space with the following reconstruction to the fake x- (50— 6)—
vectors of the original dimension BN features §JSS AM Mel-fbanks \2/ NsE
7 model
0O1c1 |01: with forced dissimilarity between original and generated x-vectors -
S2 S2c1: applied on the top of the B1 x-vector anonymization X-vector || x-vector (4) Anonvmized P
Input speech T extractor »[ Anonymizaton y Anonymized
B1: x-vector anonymization using domain-adversarial training, x-vector speech
S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding
to adversarial branches in ANN for x-vector reconstruction
M1 B1: ASR part to extract BN features for SS models (E2E ASR for BNs) Pool of x-vectors
B1: ASR part to extract BN features for SS models (E2E ASR for BNs; "Q‘.
M1c1 [semi-adversarial training to learn linguistic features while masking e
speaker information)
M1c2 [B1: copy-synthesis (original x-vectors)
M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to
NSF are original
B1: x-vectors provided to SS AM are original, x-vectors provided to
M1c4 N are anonvmized +
* K2 anonymization using x-vectors and SS models: Voice-Indistinguishability metric; a waveform vocoder Speaker pool: + Modifications in Bl
based on Griffin-Lim algorithm test set itself T bmitted additi | ized
*
D1 B2: additional modifications in pole radius eams submitted additiona ?nonymlze_
speech data for post-evaluation analysis
11 modifications in formants, FO and speaking rate

VoicePrivacy



Related to Bl

Participants’ systems

Description

Modified components / data in B1

Data

B1: x-vector anonymization using singular value modification

Speaker pool:

LihriTTS.train.nthar-500

VoicePrivacy

FO Fo
B1: x-vector anonymization keeping original distribution of cosine e
* O1 distances between speaker x-vectors; GMM for sampling vectors in a (\
PCA-reduced space with the following reconstruction to the fake x- (50— 6)—
vectors of the original dimension BN features §JSS AM Mel-fbanks \2/ NsE
7 model
0O1c1 |01: with forced dissimilarity between original and generated x-vectors -
* S2 S2c1: applied on the top of the B1 x-vector anonymization Input speech ;();:reaf;:%rr x-vector (=4:)Anonymizaton Anonymized Anonymized
B1: x-vector anonymization using domain-adversarial training, x-vector speech
S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding
to adversarial branches in ANN for x-vector reconstruction
* M1 B1: ASR part to extract BN features for SS models (E2E ASR for BNs) Pool of x-vectors
B1: ASR part to extract BN features for SS models (E2E ASR for BNs; "Q‘.
M1c1 [semi-adversarial training to learn linguistic features while masking e
speaker information)
M1c2 [B1: copy-synthesis (original x-vectors)
M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to
NSF are original
Mica B1: x-vectors provided to SS AM are original, x-vectors provided to +
NSF are anonymized
* K2 anonymization using x-vectors and SS models: Voice-Indistinguishability metric; a waveform vocoder Speaker pool: + Modifications in Bl
based on Griffin-Lim algorithm test set itself T bmitted additi | ized
*
D1 B2: additional modifications in pole radius eams submitted additiona ?nonymlze_
speech data for post-evaluation analysis
11 modifications in formants, FO and speaking rate




Participants’ systems

System Description Modified components / data in B1
Q @ @ ® Data
A2 B1: x-vector anonymization using singular value modification + \{ M
SLihriTTS train ar 500

extractor \(\ \r\
BN features .SJ Mel-fbanks @ NSE

B1: x-vector anonymization keeping original distribution of cosine
* 01 distances between speaker x-vectors; GMM for sampling vectors in a

PCA-reduced space with the following reconstruction to the fake x-

vectors of the original dimension >SS AM o
— O1c1 |O1: with forced dissimilarity between original and generated x-vectors ;
00 | s2  |s2c1: appii . X-vector || x- (4) ; .

- applied on the top of the B1 x-vector anonymization X-vector i Anonvmized
Input speech T extractor »[ Anonymizaton y Anonymized

o B1: x-vector anonymization using domain-adversarial training, x-vector speech
-+ S2c¢1 |autoencoders: using gender, accent, speaker id outputs corresponding
© to adversarial branches in ANN for x-vector reconstruction
_F_), * M1 B1: ASR part to extract BN features for SS models (E2E ASR for BNs) Pool of x-vectors
f_U B1: ASR part to extract BN features for SS models (E2E ASR for BNs; ‘Q‘.
g M1c1 [semi-adversarial training to learn linguistic features while masking B’

sgeaker informalion!

M1c2 [B1: copy-synthesis (original x-vectors)

M1ic3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to +
NSF are original
Mic4 B1: x-vectors provided to SS AM are original, x-vectors provided to +

NSF are anonymized

* K2 anonymization using x-vectors and SS models: Voice-Indistinguishability metric; a waveform vocoder Speaker pool:
based on Griffin-Lim algorithm test set itself

* Teams submitted additional anonymized

D1 B2: additional modifications in pole radius K R
speech data for post-evaluation analysis

1 modifications in formants, FO and speaking rate

VoicePrivacy



Participants’ systems

Description Modified components / data in B1
Data

A2 B1: x-vector anonymization using singular value modification + \ + e

LihriTTS train.athar.500

FO

B1: x-vector anonymization keeping original distribution of cosine
o1 distances between speaker x-vectors; GMM for sampling vectors in a

PCA-reduced space with the following reconstruction to the fake x- (50— (6)—
vectors of the original dimension E\t{eatures §JSS AM Mel-fbanks }2/ NsF
7 | model
O1c1 |O1: with forced dissimilarity between original and generated x-vectors -
S2 S2c1: applied on the top of the B1 x-vector anonymization X-vector || x-vector 4 Anonvmized P
— . — Input speech T[ extractor » Anonymizaton y Anonymized
B1: x-vector anonymization using domain-adversarial training, x-vector speech

S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding
to adversarial branches in ANN for x-vector reconstruction

* M1 B1: ASR part to extract BN features for SS models (E2E ASR for BNs) Pool of x-vectors

B1: ASR part to extract BN features for SS models (E2E ASR for BNs; "Q‘.
M1c1 [semi-adversarial training to learn linguistic features while masking —
speaker information)

Related to B1

M1c2 |B1: copy-synthesis (original x-vectors)

M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to +
NSF are original
M1ca B1: x-vectors provided to SS AM are original, x-vectors provided to +

NSF are anonymized

+ Modifications in Bl

* K2 anonymization using x-vectors and SS models: Voice-Indistinguishability metric; a waveform vocoder Speaker pool:
based on Griffin-Lim algorithm test set itself

* Teams submitted additional anonymized

D1 B2: additional modifications in pole radius - .
speech data for post-evaluation analysis

" modifications in formants, FO and speaking rate

VoicePrivacy



Participants’ systems

Description

Modified components / data in B1

Data

B1: x-vector anonymization using singular value modification

Speaker pool:

\ibriT TS train.nthar.500

o1

B1: x-vector anonymization keeping original distribution of cosine
distances between speaker x-vectors; GMM for sampling vectors in a

FO

FO

extractor

VoicePrivacy

PCA-reduced space with the following reconstruction to the fake x- (50— (6)—
vectors of the original dimension \N features §JSS AM Mel-fbanks \2/ Nsk
i model
01: with forced dissimilarity between original and generated x-vectors .
* S§2 S2c1: applied on the top of the B1 x-vector anonymization X-vector || x-vector (4) Anonvmized P
— : — Input speech T[ extractor » Anonymizaton y Anonymized
B1: x-vector anonymization using domain-adversarial training, x-vector speech
S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding
to adversarial branches in ANN for x-vector reconstruction
* M1 B1: ASR part to extract BN features for SS models (E2E ASR for BNs) Pool of x-vectors
B1: ASR part to extract BN features for SS models (E2E ASR for BNs; "Q‘.
M1c1 [semi-adversarial training to learn linguistic features while masking e
speaker information)
M1c2 [B1: copy-synthesis (original x-vectors)
M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to
NSF are original
Mica B1: x-vectors provided to SS AM are original, x-vectors provided to +
NSF are anonymized
* K2 anonymization using x-vectors and SS models: Voice-Indistinguishability metric; a waveform vocoder Speaker pool:
based on Griffin-Lim algorithm test set itself T bmitted additi | ized
*
D1 B2: additional modifications in pole radius eams submitted additiona ?nonymlze_
speech data for post-evaluation analysis
11 modifications in formants, FO and speaking rate




Participants’ systems

@

FO

FO
extractor
9 X-vector
extractor

BN features

Mel-fbanks @ NSF
S5 AM .IH |"|<‘{|\p.p...
@ i .

x-vector speech

H

Input speech

—

Pool of x-vectors

£on

s ) pDLIO 0C d CO pone a3 B
DB @B OD Data
A2 B1: x-vector anonymization using singular value modification + + e e
LibriTTS-train-other-500
LibriTTS train-clean-100
B1: x-vector anonymization keeping original distribution of cosine
* O1 distances between speaker x-vectors; GMM for sampling vectors in a + + |speak "
PCA-reduced space with the following reconstruction to the fake x- Li?)?ii‘ﬁsr-?;?n'-other-soo
vectors of the original dimension VoxCeleb-1.2
0O1c1 |01: with forced dissimilarity between original and generated x-vectors + +
* S§2 S2c1: applied on the top of the B1 x-vector anonymization +
B1: x-vector anonymization using domain-adversarial training,
S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding +
to adversarial branches in ANN for x-vector reconstruction
* M1 B1: ASR part to extract BN features for SS models (E2E ASR for BNs) + + | +
B1: ASR part to extract BN features for SS models (E2E ASR for BNs;
M1c1 [semi-adversarial training to learn linguistic features while masking + + |+
speaker information)
M1c2 [B1: copy-synthesis (original x-vectors)
M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to
NSF are original
Mica B1: x-vectors prc_:wded to SS AM are original, x-vectors provided to +
*x K2 anonymization using x-vectors and SS models: Voice-Indistinguishability metric; a waveform vocoder Speaker pool:
based on Griffin-Lim algorithm test set itself
D1 B2: additional modifications in pole radius
11 modifications in formants, FO and speaking rate

+ Modifications in Bl

* Teams submitted additional anonymized
speech data for post-evaluation analysis



Participants’ systems

Description Modified components / data in B1
Data

A2 B1: x-vector anonymization using singular value modification + \ + e

LihriTTS train.athar.500

FO

B1: x-vector anonymization keeping original distribution of cosine
o1 distances between speaker x-vectors; GMM for sampling vectors in a

PCA-reduced space with the following reconstruction to the fake x- (50— (6)—
vectors of the original dimension E\t{eatures §JSS AM Mel-fbanks }2/ NsF
7 | model
O1c1 |O1: with forced dissimilarity between original and generated x-vectors -
S2 S2c1: applied on the top of the B1 x-vector anonymization X-vector || x-vector 4 Anonvmized P
— . — Input speech T[ extractor » Anonymizaton y Anonymized
B1: x-vector anonymization using domain-adversarial training, x-vector speech

S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding
to adversarial branches in ANN for x-vector reconstruction

* M1 B1: ASR part to extract BN features for SS models (E2E ASR for BNs) Pool of x-vectors

B1: ASR part to extract BN features for SS models (E2E ASR for BNs; "Q‘.
M1c1 [semi-adversarial training to learn linguistic features while masking —
speaker information)

Related to B1

M1c2 |B1: copy-synthesis (original x-vectors)

M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to +
NSF are original
M1ca B1: x-vectors provided to SS AM are original, x-vectors provided to +

NSF are anonymized

+ Modifications in Bl

* K2 anonymization using x-vectors and SS models: Voice-Indistinguishability metric; a waveform vocoder Speaker pool:
based on Griffin-Lim algorithm test set itself

* Teams submitted additional anonymized

D1 B2: additional modifications in pole radius - .
speech data for post-evaluation analysis

" modifications in formants, FO and speaking rate
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Description

B1: x-vector anonymization using singular value modification

Approaches to x-vector anonymization

o1

B1: x-vector anonymization keeping original distribution of cosine
distances between speaker x-vectors; GMM for sampling vectors in a
PCA-reduced space with the following reconstruction to the fake x-
vectors of the original dimension

O1c1

01: with forced dissimilarity between original and generated x-vectors

S2

S2c1: applied on the top of the B1 x-vector anonymization

S2c1

B1: x-vector anonymization using domain-adversarial training,
autoencoders: using gender, accent, speaker id outputs corresponding
to adversarial branches in ANN for x-vector reconstruction

FO
extractor

Input speech T extractor

FO

BN features@ Mel-fbanks @ NSF
— SS AM
model
x-vector _4 Anonymized

Anonymizaton

X-vector

Pool of x-vectors

fon

Anonymized
speech

M1c2

B1: copy-synthesis (original x-vectors)

M1c3

B1: x-vectors provided to SS AM are anonymized, x-vectors provided to
NSF are original

M1c4

B1: x-vectors provided to SS AM are original, x-vectors provided to
NSF are anonymized
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Approaches to x-vector anonymization

Description

A2 B1: x-vector anonymization using singular value modification

onymization using statistical-

B1: x-vector anonymization keeping original distribution of cosine
o1 distances between speaker x-vectors; GMM for sampling vectors in a

PCA-reduced space with the following reconstruction to the fake x-
vectors of the original dimension

O1c1 |O1: with forced dissimilarity between original and generated x-vectors

S2 S2c1: applied on the top of the B1 x-vector anonymization 4 i
Anonymizaton

A

B1: x-vector anonymization using domain-adversarial training,
S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding T
to adversarial branches in ANN for x-vector reconstruction

M1c2 |B1: copy-synthesis (original x-vectors)

M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to
NSF are original

M1ic4 B1: x-vectors provided to SS AM are original, x-vectors provided to
¢ NSF are anonymized
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Approaches to x-vector anonymization: A2

Description

B1: x-vector anonymization using singular value modification

B1: x-vector anonymization keeping original distribution of cosine
* 01 distances between speaker x-vectors; GMM for sampling vectors in a
PCA-reduced space with the following reconstruction to the fake x-
vectors of the original dimension
O1c1 |O1: with forced dissimilarity between original and generated x-vectors
* S2 S2c1: applied on the top of the B1 x-vector anonymization
B1: x-vector anonymization using domain-adversarial training,
S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding
to adversarial branches in ANN for x-vector reconstruction
M1c2 |B1: copy-synthesis (original x-vectors)
M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to
NSF are original
M1ca B1: x-vectors provided to SS AM are original, x-vectors provided to
NSF are anonymized
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A2:Singular value modification | Mawalim 2020]

x-vector
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X512

Matrix
Formation

SVD
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X-vector
pool
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reconstruction

x'y

r
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!
X 512

>|<The figure is copied from the presentation: [Mawalim 2020] X-Vector Singular Value Modification and

Statistical-Based Decomposition with Ensemble Regression Modeling for Speaker Anonymization System.
Candy Olivia Mawalim, Kasorn Galajit, Jessada Karnjana, Masashi Unoki




Approaches to x-vector anonymization: A

Description

B1: x-vector anonymization using singular value modification

B1: x-vector anonymization keeping original distribution of cosine
* 01 distances between speaker x-vectors; GMM for sampling vectors in a
PCA-reduced space with the following reconstruction to the fake x-
vectors of the original dimension
O1c1 |O1: with forced dissimilarity between original and generated x-vectors
* S2 S2c1: applied on the top of the B1 x-vector anonymization
B1: x-vector anonymization using domain-adversarial training,
S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding
to adversarial branches in ANN for x-vector reconstruction
M1c2 |B1: copy-synthesis (original x-vectors)
M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to
NSF are original
M1ca B1: x-vectors provided to SS AM are original, x-vectors provided to
NSF are anonymized

VoicePrivacy

A: Statistical-based decomposition with regression models
[Mawalim 2020]

Anonymization pool
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'
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>|<The figure is copied from the presentation: [Mawalim 2020] X-Vector Singular Value Modification and

Statistical-Based Decomposition with Ensemble Regression Modeling for Speaker Anonymization System.
Candy Olivia Mawalim, Kasorn Galajit, Jessada Karnjana, Masashi Unoki




Approaches to x-vector anonymization: O1
Ol: [Turner 2020]

—— — « Keeping original distribution of cosine distances between
A2 B1: x-vector anonymization using singular value modification
speaker x-vectors
* GMM for sampling x-vectors in a PCA-reduced space with the
B1: x-vector anonymization keeping original distribution of cosine following reconstruction of x-vectors of the original dimension
o1 distances between speaker x-vectors; GMM for sampling vectors in a

PCA-reduced space with the following reconstruction to the fake x-
vectors of the original dimension

O1c1 |O1: with forced dissimilarity between original and generated x-vectors

* S2 S2c1: applied on the top of the B1 x-vector anonymization e Original .
& He X Easy to identify system applied

X Voices lack the diversity of
natural voices

X Application to same voice twice
produces overly similar voices

B1: x-vector anonymization using domain-adversarial training,
S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding
to adversarial branches in ANN for x-vector reconstruction

M1c2 |B1: copy-synthesis (original x-vectors)

M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to
¢ NSF are original X-vector generator model-fitting

M1ca B1: x-vectors provided to SS AM are original, x-vectors provided to — X-vector
NSF are anonymized Extractor _"[ X-vector Pool j e fit G

>|<The figures are copied from the presentation [Turner 2020] Speaker Anonymization with Distribution-

Preserving X-Vector Generation for the VoicePrivacy Challenge 2020. Henry Turner, Giulio Lovisotto, Tvan
Martinovic
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A2 B1: x-vector anonymization using singular value modification
B1: x-vector anonymization keeping original distribution of cosine
* 01 distances between speaker x-vectors; GMM for sampling vectors in a
PCA-reduced space with the following reconstruction to the fake x-
vectors of the original dimension
I O1c1 |O1: with forced dissimilarity between original and generated x-vectors
* S2 S2c1: applied on the top of the B1 x-vector anonymization
B1: x-vector anonymization using domain-adversarial training,
S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding
to adversarial branches in ANN for x-vector reconstruction
M1c2 |B1: copy-synthesis (original x-vectors)
M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to
NSF are original
M1ic4 B1: x-vectors provided to SS AM are original, x-vectors provided to
NSF are anonymized

VoicePrivacy

Approaches to x-vector anonymization: Oicl
Olcl:[Turner 20207

Forced dissimilarity between original and anonymized x-
vectors




Approaches to x-vector anonymization: S2c1
S2cl: [Espinoza-Cuadros 2020]

—— — Domain-adversarial training
A2 B1: x-vector anonymization using singular value modification . .
« Autoencoders using gender, accent, speaker id outputs
corresponding to adversarial branches in ANN for x-vector
B1: x-vector anonymization keeping original distribution of cosine reconstruction
* 01 distances between speaker x-vectors; GMM for sampling vectors in a
PCA-reduced space with the following reconstruction to the fake x-
vectors of the original dimension AAN Encoder Latent Decoder
fi
O1c1 |O1: with forced dissimilarity between original and generated x-vectors Be eature Oa
* S2 S2c1: applied on the top of the B1 x-vector anonymization Reconstructed
X-vector —» — R — e D ——
B1: x-vector anonymization using domain-adversarial training, x-vector
S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding
to adversarial branches in ANN for x-vector reconstruction |
— / - [ Speaker adversarial branch ]_. Speaker ID
65
M1c2 [B1: copy-synthesis (original x-vectors) L - [ Gender adversarial branch ] —» Gender
0,
M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to -
NSF are original . — [ Accent adversarial branch ]_. Accent
B1: x-vectors provided to SS AM are original, x-vectors provided to _ Ba
M1cd |\ sk are anonymized ref:s:'lelg;er

>|<The figure is copied from the presentation |[Espinoza-Cuadros 2020] Speaker De-identification System

using Autoencoders and Adversarial Training. Fernando M. Espinoza-Cuadros, Juan M. Perero-Codosero,
Javier Anton-Martin, Luis A. Hernandez-Gomez
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Approaches to x-vector anonymization: S2
s2

A2 B1: x-vector anonymization using singular value modification
B1: x-vector anonymization keeping original distribution of cosine
* 01 distances between speaker x-vectors; GMM for sampling vectors in a

PCA-reduced space with the following reconstruction to the fake x-
vectors of the original dimension

O1c1 |O1: with forced dissimilarity between original and generated x-vectors

I" S2 S2c1: applied on the top of the B1 x-vector anonymization

B1: x-vector anonymization using domain-adversarial training,

S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding
to adversarial branches in ANN for x-vector reconstruction

M1c2 |B1: copy-synthesis (original x-vectors)

M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided to
NSF are original

M1ca B1: x-vectors provided to SS AM are original, x-vectors provided to
NSF are anonymized

VoicePrivacy

: [Espinoza-Cuadros 2020]

Domain-adversarial training

Autoencoders using gender, accent, speaker id outputs
corresponding to adversarial branches in ANN for x-vector
reconstruction — applied on the top of the B1 x-vector
anonymization




Approaches to x-vector anonymization: M1c2, M1c3, M1c4
[Champion 2020]

A2 B1: x-vector anonymization using singular value modification

Mlc2:
« Copy-synthesis (original x-vectors)

B1: x-vector anonymization keeping original distribution of cosine
* distances between speaker x-vectors; GMM for sampling vectors in a

o1 PCA-reduced space with the following reconstruction to the fake x- M I C3 .
vectors of the original dimension

» X-vectors provided to SS AM are anonymized; x-vectors
provided to NSF are original

O1c1 |O1: with forced dissimilarity between original and generated x-vectors

* S2 S2c1: applied on the top of the B1 x-vector anonymization

B1: x-vector anonymization using domain-adversarial training,
S2c1 |autoencoders: using gender, accent, speaker id outputs corresponding M I C4:
to adversarial branches in ANN for x-vector reconstruction

« X-vectors provided to SS AM are original; x-vectors
provided to NSF are anonymized

M1c2 |B1: copy-synthesis (original x-vectors) I

M1c3 B1: x-vectors provided to SS AM are anonymized, x-vectors provided t
NSF are original

M1ic4 B1: x-vectors provided to SS AM are original, x-vectors provided to
NSF are anonymized
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Participants’ systems: other approaches

* K2 anonymization using x-vectors and SS models: Voice-Indistinguishability metric; a waveform vocoder Speaker pool:
based on Griffin-Lim algorithm test set itself

D1 B2: additional modifications in pole radius

"M modifications in formants, FO and speaking rate
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Participants’ systems: other approaches

* K2: [Han 2020] .y
o Anonymization using x-vectors and SS models . “Model | [proreced
. . . - . .- . Utterence oo Utterance
o Voice-indistinguishability metric o] [ Vecoder

o Speaker pool: test set itself

*The figure is copied from the presentation: [Han 2020] System
Description for Voice Privacy Challenge. Yaowei Han, Sheng Li, Yang Cao,
Masatoshi Yoshikawa

* K2 anonymization using x-vectors and SS models: Voice-Indistinguishability metric; a waveform vocoder Speaker pool:
based on Griffin-Lim algorithm test set itself
D1 B2: additional modifications in pole radius

" modifications in formants, FO and speaking rate
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Participants’ systems: other approaches /

* K2: [Han 2020] .y
o Anonymization using x-vectors and SS models [ PModel | [ prorerted
. . . - . .- . Utterence oo Utterance

o Voice-indistinguishability metric o] [ Vecoder

o Speaker pool: test set itself

*The figure is copied from the presentation: [Han 2020] System
Description for Voice Privacy Challenge. Yaowei Han, Sheng Li, Yang Cao,
Masatoshi Yoshikawa

¢ I1: [Dubagunta 2020]
o Madifications in formants, FO and speaking rate

* K2 anonymization using x-vectors and SS models: Voice-Indistinguishability metric; a waveform vocoder Speaker pool:
based on Griffin-Lim algorithm test set itself

D1 B2: additional modifications in pole radius

" modifications in formants, FO and speaking rate
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Objective evaluation results: EER

Results for selected primary systems

Mean EER values (over all VoicePrivacy dev and test datasets)
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Objective evaluation results: EER

Results for selected primary systems

Mean EER values (over all VoicePrivacy dev and test datasets)
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Objective evaluation results: EER

Results for selected primary systems

Mean EER values (over all VoicePrivacy dev and test datasets)

53.1 51.6 52.7 oa

47.5 mmm aa [ ° oa — original enrollment, anonymized trial

@

49.7

w
o
1

¢ aa — anonymized enrollment, anonymized trial

37.8 38.3
31.9 321 ® Anonymization of only the trial data greatly
2.7 273 27.4 increases the EER (0a) => anonymization
243 effectively increases the users’ privacy
20- 200 ° Anonymization  using pure  signal-
136 144 processing methods {£2, D1, I1} is less

effective than methods related to B1
10 A
., 42 I ¢ Anonymized enrollment data result in a
-- b BB BB | much lower EER (aa) for all the systems.
’ B2 D1 1 2 Bl1 M1 s2 01

Orig K2 A
Systems
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Objective evaluation results: EER for all systems

Mean EER values (over all VoicePrivacy dev and test datasets)

53.1 52.9 52.7 oa
509 508 51.6 - aa
50 49.7 . _ . _ _
475
471 471 62 460
41.8
40 - , , , , , , ,
371 37.8 38.3 38.3
35.6
s 319 319 321
< 301 | 292 302 :
o 27.7 273 27.4
w
w yig 241 25.3
20.0
20 -
136 136 138 144
10 -
signal-processing
based
3, A2
x-vector based
related to Bl 0° :
orig K2 B2 Mlc4 Mlc2 D1 11 A2 Slcl Al Mlc3 Mlcl Bl M1 S1 S2c1 S2 0Olcl 01

M1c4: x-vectors for SS AM original; for NSF — anonymized
M1c2: copy-synthesis 2
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Objective evaluation results: WER

Results for selected primary systems

WER values
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12.4 ® Anonymization incurs a large WER
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Objective evaluation results: WER vs EER

Better utility Better utility
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Participants’ findings /

4 Participants proposed and investigated various anonymization approaches providing improvements in
some test-cases/metrics over the baseline anonymization systems (B1, B2) including:

® (B1) x-vector anonymization:
® Distribution-preserving voice anonymization O: [Turner 2020]
® Singular value modification and statistical-based decomposition with regression models A: [Mawalim 2020]
® Domain-adversarial training and autoencoders S: [Espinoza-Cuadros 2020]

® (B1) End-to-end ASR to extract BN features M: [Champion 2020]

® (B2) Pole radius D: [Gupta 2020]
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Participants’ findings /

4 Participants proposed and investigated various anonymization approaches providing improvements in
some test-cases/metrics over the baseline anonymization systems (B1, B2) including:

® (B1) x-vector anonymization:
® Distribution-preserving voice anonymization O: [Turner 2020]
® Singular value modification and statistical-based decomposition with regression models A: [Mawalim 2020]
® Domain-adversarial training and autoencoders S: [Espinoza-Cuadros 2020]

® (B1) End-to-end ASR to extract BN features M: [Champion 2020]

® (B2) Pole radius D: [Gupta 2020]

4 Limitations of the baselines including:
® (B1) Resynthesis by itself causes distortions in WER, increase in EER. A: [Mawalim 2020],
® (B1) Not only x-vectors contain sensitive information, some leakage can be found in BNs, FO. M: [Champion 2020]

® (B1) Anonymized x-vectors have different properties to original x-vectors O: | Turner 2020
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Participants’ findings /

4 Participants proposed and investigated various anonymization approaches providing improvements in
some test-cases/metrics over the baseline anonymization systems (B1, B2) including:

® (B1) x-vector anonymization:
® Distribution-preserving voice anonymization O: [Turner 2020]
® Singular value modification and statistical-based decomposition with regression models A: [Mawalim 2020]
® Domain-adversarial training and autoencoders s:

® (B1) End-to-end ASR to extract BN features M: [Champion 2020]

® (B2) Pole radius D: [Gupta 2020]

4 Limitations of the baselines including:
® (B1) Resynthesis by itself causes distortions in WER, increase in EER. A: [Mawalim 2020],
® (B1) Not only x-vectors contain sensitive information, some leakage can be found in BNs, FO. M: [Champion 2020]

® (B1) Anonymized x-vectors have different properties to original x-vectors O: | Turner 2020
v Other anonymization approaches:

® X-vector based anonymization using the voice-indistinguishability metric and SS models K:
® Signal-processing approach based on formant-shifting 1: [Dubagunia 2020]
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Conclusions /

¢ 2 classes of anonymization methods:
o X-vectors-based with speech synthesis models (B1 and related methods)
o signal-processing based (B2 and others)
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Conclusions /

¢ 2 classes of anonymization methods:
o X-vectors-based with speech synthesis models (B1 and related methods)
o signal-processing based (B2 and others)

“ Anonymization using x-vector-based anonymization techniques related to B1 in
average is more effective than signal-based processing techniques: better privacy (EER)
and utility (WER) but there are some exceptions
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Conclusions

2 classes of anonymization methods:

o X-vectors-based with speech synthesis models (B1 and related methods)
o signal-processing based (B2 and others)

Anonymization using x-vector-based anonymization techniques related to B1 in

average is more effective than signal-based processing techniques: better privacy (EER)
and utility (WER)

Systems perform and are ranked differently for different attack models. There is no
system which is the best for all metrics, all datasets and attack models.

VoicePrivacy



Conclusions

2 classes of anonymization methods:

o X-vectors-based with speech synthesis models (B1 and related methods)
o signal-processing based (B2 and others)

Anonymization using x-vector-based anonymization techniques related to B1 in

average is more effective than signal-based processing techniques: better privacy (EER)
and utility (WER)

Systems perform and are ranked differently for different attack models. There is no
system which is the best for all metrics, all datasets and attack models.

Potential for improvement
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Conclusions

2 classes of anonymization methods:

o X-vectors-based with speech synthesis models (B1 and related methods)
o signal-processing based (B2 and others)

Anonymization using x-vector-based anonymization techniques related to B1 in

average is more effective than signal-based processing techniques: better privacy (EER)
and utility (WER)

Systems perform and are ranked differently for different attack models. There is no
system which is the best for all metrics, all datasets and attack models.

Potential for improvement

Investigate other attack models and downstream tasks — in post-evaluation (the following
part of this presentation)
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Conclusions

2 classes of anonymization methods:

o X-vectors-based with speech synthesis models (B1 and related methods)
o signal-processing based (B2 and others)

Anonymization using x-vector-based anonymization techniques related to B1 in

average is more effective than signal-based processing techniques: better privacy (EER)
and utility (WER)

Systems perform and are ranked differently for different attack models. There is no
system which is the best for all metrics, all datasets and attack models.

Potential for improvement

Investigate other attack models and downstream tasks — in post-evaluation (the following
part of this presentation)

The considered metrics do not evaluate all the requirements for anonymization
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Objective evaluation results: EER for primary systems

Mean EER values (over all VoicePrivacy dev and test datasets)
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Sorted by EER-0a

31.9 321
‘ ‘ 27.4
Bl M1 A2

¢ Anonymization of only the trial data greatly increases the EER (oa) for x-
vector based anonymization methods: A2, M1, B1, K2, S2, 01 =>
anonymization effectively increases the users’ privacy. Full anonymization
(EER>50%) wrt to this attack model (0a) is achieved for A2, M1, B1.

¢ Anonymization using pure signal-processing methods (B2, D1, I1) is less

effective
[ )
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Mean EER values (over all VoicePrivacy dev and test datasets)
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transformations
xevector Sorted by EER-aa

based

¢ Anonymized enrollment data result in a much lower EER (aa) for all the
systems.

¢ The order of the system is different for EER-aa and EER-0a, but in all cases
anonymization is more effective for x-vector based methods.
Exception: K2.



Objective evaluation results:

Mean EER values (over all VoicePrivacy dev and test datasets)

EER for all systems

Mean EER values (over all VoicePrivacy dev and test datasets)
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EER values on Librispeech test sets

Objective evaluation results: EER on LibriSpeech test

EER values on Librispeech test sets
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Sorted by EER-oa (test-f-libri)

¢ Baseline EER (on original data) for female is much higher than for male
speakers.

¢ EER-o0a for female is

¢ lower than for male for most of the x-vector based anonymization
systems (exception: M1c2, Sicl, Mlic4)

¢ higher than for male for all signal-processing based methods.
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Sorted by EER-aa (test-f-libri)

¢ EER-aa for female is

¢ lower than for male for most of the x-vector based anonymization
systems (exception: S1, M1cl, Mic4);

and higher for all signal-processing based methods.

¢ For K2: EER-aa is significantly decreased for female in comparison with
the baseline EER (while for EER-0a a high level anonymization is achieved
by this system).
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Objective evaluation results: EER on VCTK-test

EER values on VCTK test sets
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60 58.8

I
test-f-vctk-oa |
55.6 p6.1 55.6

test-f-vctk-aa " 973, 395, 54.2

I
|
test-f-vctk_common-oa 26 52623 528 1§25
50.3
50 i test-f-vctk_common-aa 49.5 49.0
|
f—

48.048.3 48.5 482 482 48.3
47.5

test-m-vctk-oa g a5 172 16.6 o fSlies T "

test-m-vctk-aa 447 430 : asg 53 : 44,9 :

test-m-vctk_common-oa
test-m-vctk_common-aa

EER,%

20

10

Mlc4
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M1c4: x-vectors for SS AM original;
for NSF — anonymized
M1c2: copy-synthesis

¢ Baseline EER (on original data) for female is higher than for male speakers. ® For K2: EER-aa is decreased for female in comparison with the original EER

(while for EER-o0a for this dataset it has the highest level of anonymization

¢ EER-aa for female is higher than for male for all signal-processing based among the systems).

methods, but other methods perform differently
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Objective evaluation results: EER for different attack models /

EER-0a vs EER-aa =
@
60 K ]
N A’ oa ® Many systems (especially {A2, M1, B1} and K2 for
p fa, 4 some datasets), anonymization of the trial data
S N RO %Am_;&;_; _;,j IR greatly increases the EER (oa).
K Yot SR ° For (0oa@) many systems have ERR > 50% =>
e " % anonymization has been achieved ?
K
R40| ¢ Using anonymized enroliment data (aa) results in a
s |4 & . . much lower EER for most of the systems.
w 52 B2 .
n i ® Different performance for (oa) and (aa) evaluation
S [ | cases => the choice of the optimal anonymization
e x Dy 3 algorithm will depend an the attack model and
. wet| . available data.
20 o1 % .. .
s s om = ¢ It is important to correctly define the attack model to
i1 avoid overestimated sense of privacy.
S2cl
0 10 20 30 40

_ EER-aa, % _ (oa) original enroliment, anonymized trials
Each point corresponds to EER results for a particular dev or test

dataset from the set of all 12 VoicePrivacy dev/test datasets. (aa) anonymized enroliment, anonymized trials
L]
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Objective evaluation results: EER vs C[['"

EER vs Clir-min (oa) EER vs Clir-min (aa)
1.0 W A K 1.0 Py
Ot A =
A Y - . >§
+ P . ; ﬂ 1
K . U
. K 3 8} .
0.9 K 0.8 : g
82 * Al A!‘a*m. * Al
’ A A2 & A A A2
sl n 5 Bl Al | 5 Bl
0.8 % e B2 A m = B2
* o D1 0.6 , ' D1
L= oy n L= mxk n
€ i’ ' £ [
£ P K K2 £ o K K2
00.7 * & ! M1 (@) e P" M1
o M1cl 0.4 S M1cl
N M1c2 L, M1c2
* «  Mlc3 % m «  Mlc3
06 . + Mica J © Milca
; 01 k" o1
01lcl 0.2 KKK 01lcl
¥ s S2 K¢ s S2
0.5 82 s1 Kf S1
; - Slcl ~ Slcl
1 K
S2cl 0.0 S2cl
20 30 40 50 60 0 10 20 30 40
EER, % EER, %

Each point corresponds to ASV_eval results for a particular dev or test dataset from the set of all 12 VoicePrivacy dev/test datasets.
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Objective evaluation results: C,, all systems

Sorted by EER-aa

Mean Clir values (over all VoicePrivacy dev and test datasets)
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7 all systems

Objective evaluation results: C

Sorted by EER-aa

Mean Clir-min values (over all VoicePrivacy dev and test datasets)
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Objective evaluation results: C,. & C

Clir,%

min
IIr

Clir-min values on Librispeech test sets

on Librispeech-test

Clir values on Librispeech test sets
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Objective evaluation results: C,, & C

Clir values on VCTK test sets
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Objective evaluation results: mean EER vs C'"

EER vs Clir-min
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Objective evaluation results: WER for primary systems

WER values
28.2
Il mean signal-processing 27.1
. based
libri-dev transformations
251 mmm libri-test
x-vector based
vctk-dev
20 - e vctk-test 189 19.1
17.8
X 15.2 15.2 15.3 15.6
o -
UBJ 15 12.8 K3
101 8.4 8.4 53
6.7 6.8 6.8 7.2
5.8
5 4 418 N ) ) A T K .
0 -
Orig Bl S2 A2 01 11 M1 K2 D1 B2

Anonymization incurs a large WER
increase for all the systems and varies a
lot depending on the method:

o VCTK: 42-2225%b relative
o LibriSpeech: 19-120% relative

More WER degradation is observed on
the domain-mismatch* corpus (VCTK)

Best result for VCTK: I1

Best (similar) results for LibriSpeech:
systems using x-vector based
anonymization: B1, S2, A2, O1.

M1 is similar to B1, but uses a different
ASR model to extract BN features, that
increases WER.

In average, x-vector based
anonymization methods, provides
smaller WER than signal-processing
based methods using mcAdams
coefficient.

* wrt data for training ASR_eval and anonymization systems

(except for D1, B2 where no training data are used)
°
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WER, %

Objective evaluation results: WER for all systems

WER values
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Objective evaluation results: WER vs EER

Better utility Better utility
@ WER-a vs EER-aa @ < WER-a vs EER-aa
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“ No system which is the best for both metrics ° 11 provides best results among the systems using signal-processing based methods

¢ Best anonymization: S2, 01
¢ Lowest WER: I1 (only for LibriSpeech, not stable), B1, S2, A2, 01
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WER vs Naturalness & Intelligibility: mean scores /

WER vs Naturalness & Intelligibility
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Linkability,%

Linkability,%

Linkability: VCTK-test

Linkability values on VCTK test sets
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Linkability: Librispeech-test

Linkability values on Librispeech test sets
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Objective evaluation results: mean EER vs Linkability

EER vs Linkability (means over all VoicePrivacy datasets)
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Similarity matrices: LibriSpeech-test-male

B1: libri_test_trials_m A2: libri_test_trials_m O1: libri_test_trials_m M1: libri_test_trials_m S2: libri_test_trials_m

signal-processing
based

x-vector based
related to B1
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Similarity matrices: LibriSpeech-test-female

B1: libri_test_trials_f A2: libri_test_trials_f O1: libri_test_trials_f M1: libri_test_trials_f S2: libri_test_trials_f
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Similarity matrices: VCTK-test-male (different)

B1: vctk_test_trials_m A2: vctk_test_trials_m O1: vctk_test_trials_m M1: vctk_test trials_m S2: vctk_test_trials_m

[e] a o a
K2: vctk_test _trials_m
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Similarity matrices: VCTK-test-female (different)

B1: vctk_test_trials_f A2: vctk_test_trials_f 01: vctk_test_trials_f M1: vctk_test trials_f S2: vctk_test_trials_f

K2: vctk_test trials_f

o .
© .
[¢] a

[ .
1l
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signal-processing
based

x-vector based
related to B1

Gain of voice distinctiveness

De-ldentification vs Gain of voice distinctiveness

De-Identification & Gain of voice distinctiveness:
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De-Identification & Gain of voice distinctiveness: LibriSpeech

De-ldentification vs Gain of voice distinctiveness
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The VoicePrivacy 2020 Challenge

organisers@lists.voiceprivacychallenge.org

Thank youl!
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