

Odyssey 2020

The VoicePrivacy 2020 Challenge

Objective evaluation- Linkability

Natalia Tomashenko¹ Brij M.L. Srivastava² Xin Wang³ **Emmanuel Vincent**² Andreas Nautsch⁴ Junichi Yamagishi ^{3,5} Nicholas Evans⁴ Jose Patino⁴ Jean-François Bonastre¹ Paul-Gauthier Noé¹ Massimiliano Todisco⁴ Mohamed Maouche² Benjamin O'Brien⁶ Anais Chanclu¹

First introduced for biometric template protection

evaluation in [Gomez-Barrero et al. 2017].

Input: scores S of the ASV

Two types of trials: *H* mated and \overline{H} non-mated

The goal is to measure:

 $Linkability(s) = p(H | s) - p(\overline{H} | s)$

Linkability: Definition

 $Linkability(s) = p(H | s) - p(\overline{H} | s)$

Local measure of linkability

After some transformation with the likelihood ratio $LR(s) = \frac{p(s|H)}{p(s|\overline{H})}$ and the prior ratio $\omega = \frac{p(H)}{p(\overline{H})}$

$$D_{\leftrightarrow}(s) = \begin{cases} \frac{2 \cdot \omega \cdot LR(s)}{1 + \omega \cdot LR(s)} - 1 & \text{if } \omega \cdot LR(s) > 1\\ 0 & \text{otherwise} \end{cases}$$

Global measure of linkability

$$D_{\leftrightarrow}^{sys} = \int p(s \mid H) D_{\leftrightarrow}(s) \, ds$$

 $D_{42}^{sys} = 0.88$ Mated 1.0 Non-mated 0.030 $- D_{\leftrightarrow}(s)$ 0.025 0.8 Probability Density 0.020 0.6 (s) D⁺ (S 0.015 0.4 0.010 0.2 0.005 0.000 0.0 -100-80 -60-20 20 40 -40 0 Score

Advantages

- No notion of threshold or attacker used.
- Any local separation between mated and non-mated scores can be detected.

- The usage of bins to estimate the probabilities is not exact.
- Focus only on the mated cases, the strength of non-mated evidence is ignored.

Advantages

- No notion of threshold or attacker used.
- Any local separation between mated and non-mated scores can be detected.

- The usage of bins to estimate the probabilities is not exact.
- Focus only on the mated cases, the strength of non-mated evidence is ignored.

Linkability: No threshold

[DA Van Leeuwen & N Brümmer Speaker classification 2007]

Advantages

- No notion of threshold or attacker used.
- Any local separation between mated and non-mated scores can be detected.

- The usage of bins to estimate the probabilities is not exact.
- Focus only on the mated cases, the strength of non-mated evidence is ignored.

Linkability: example of complex relation

 $D_{\leftrightarrow}^{sys} = 0.99$ (low privacy) $C_{llr}^{min} = 0.81$ (high privacy)

For C_{llr} , LLRs are the scores of the ASV.

For C_{llr}^{min} , *LLRs* are the calibrated scores of the ASV (PAV algorithm [Brummer et al. CSL'06]).

For $D_{\leftrightarrow}^{sys}$: the local conditional probability are estimated using Histograms

$$LR(s) = \frac{p(s \mid H)}{p(s \mid \overline{H})} \longleftarrow \text{Histogram of mated scores}$$

Histogram of non-mated scores

Advantages

- No notion of threshold or attacker used.
- Any local separation between mated and non-mated scores can be detected.

- The usage of bins to estimate the probabilities is not exact.
- Focus only on the mated cases, the strength of non-mated evidence is ignored.

Advantages

- No notion of threshold or attacker used.
- Any local separation between mated and non-mated scores can be detected.

- The usage of bins to estimate the probabilities is not exact.
- Focus only on the mated cases, the strength of non-mated evidence is ignored.

Linkability: only mated evidence

$$D_{\leftrightarrow}(s) = \begin{cases} \frac{2 \cdot \omega \cdot LR(s)}{1 + \omega \cdot LR(s)} - 1 & if \ \omega \cdot LR(s) > 1 \\ 0 & otherwise \end{cases}$$
$$p(H \mid s) > p(\overline{H} \mid s) \leftarrow$$

$$D_{\leftrightarrow}^{sys} = \int p(s \mid H) D_{\leftrightarrow}(s) \, ds$$

Objective evaluation Linkability

U

Sorted by oa test

Linkability and EER

a

Linkability and C_{llr}^{min}

One datapoint per dataset, attacker and system

Linkability and C_{llr}^{min}

Interesting case

Linkability vs EER

a

One datapoint per dataset, attacker and system

Linkability: EER vs ROCCH-EER

One datapoint per dataset, attacker and system

Interesting cases

Linkability vs Zebra

One datapoint per dataset, attacker and system

