The VoicePrivacy 2020 Challenge

Post evaluation analysis Voice Similarity Matrices

Presenter: Paul-Gauthier Noé

Natalia Tomashenko 1 **Brij M.L. Srivastava** ² Xin Wang³ **Emmanuel Vincent** ⁴ **Andreas Nautsch 5** Junichi Yamagishi ^{3,6} Nicholas Evans 5 Jose Patino 5 **Jean-François Bonastre** ¹ Paul-Gauthier Noé 1 Massimiliano Todisco 5 **Mohamed Maouche** ² **Benjamin O'Brien** 7

Anais Chanclu ¹

- ¹ LIA University of Avignon France
- ² Inria France
- ³ NII Tokyo Japan
- 4 Inria France
- ⁵ Audio Security and Privacy Group, EURECOM France
- ⁶ University of Edinburgh UK
- ⁷ Aix-Marseille University France

Odyssey 2020

4th November 2020

Speech Pseudonymisation Assessment Using Voice Similarity Matrices [Noe 2020]

Voice Similarity Matrices for the evaluation of:

- Differences in performance across speakers,
- ✓ Global De-Identification,
- ✓ Global Voice Distinctiveness Preservation.

Voice Similarity Matrix:

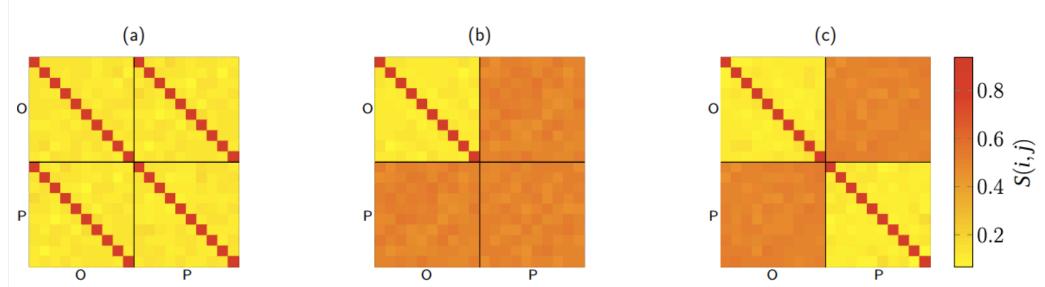
$$M = (S(i,j))_{1 \le i \le N, 1 \le j \le N}$$

$$S(i,j) = sigmoid \left(\sum_{\substack{1 \le k \le n_i \\ 1 \le l \le n_j}} \frac{llr(x_k^{(i)}, x_l^{(j)})}{n_i n_j} \right)$$

where $x_q^{(p)}$ is the q-th segment of the p-th speaker, n_p is the number of segments from the p-th speaker and $llr(\cdot,\cdot)$ is the log likelihood-ratio score from the comparison of the two speech segments.

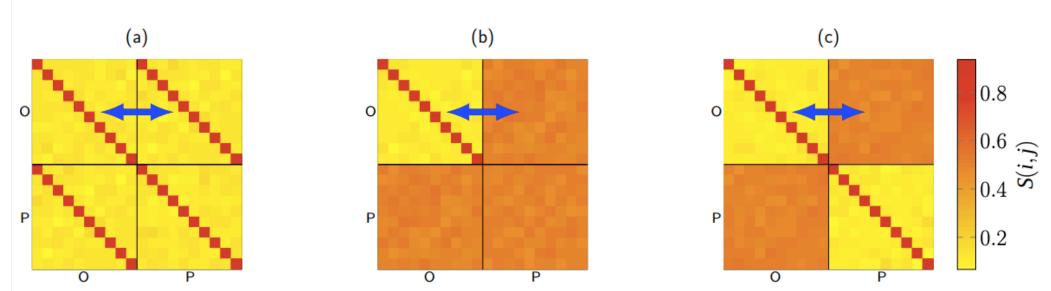
We build three voice similarity matrices:

- \checkmark M_{OO} within the original set,
- ✓ M_{OP} between the original and pseudonymized sets,
- \checkmark M_{PP} within the pseudonymised set.



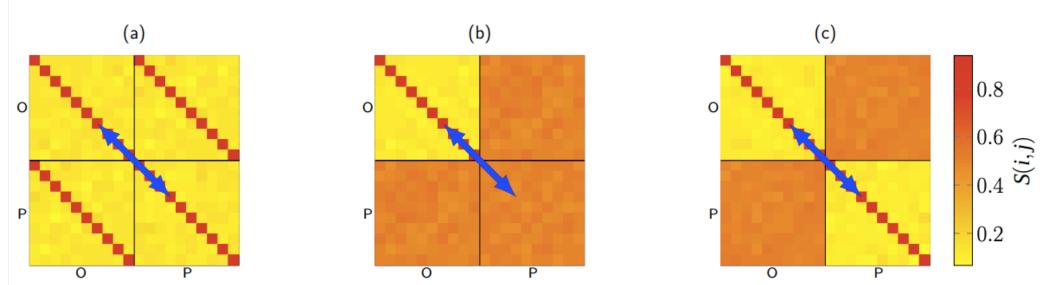
Three artificial similarity matrices. The upper-left is M_{OO} , the upper-right and lower-left are M_{OP} and the lower-right is M_{PP} .

Diagonals comparison → Insight on the global performance



Three artificial similarity matrices. The upper-left is M_{OO} , the upper-right and lower-left are M_{OP} and the lower-right is M_{PP} .

Diagonals comparison → Insight on the global performance



Three artificial similarity matrices. The upper-left is M_{OO} , the upper-right and lower-left are M_{OP} and the lower-right is M_{PP} .

Diagonals comparison → Insight on the global performance

We propose two metrics based on diagonals comparison:

De-Identification:

$$DeID = 1 - \frac{D_{diag}(M_{OP})}{D_{diag}(M_{OO})}$$

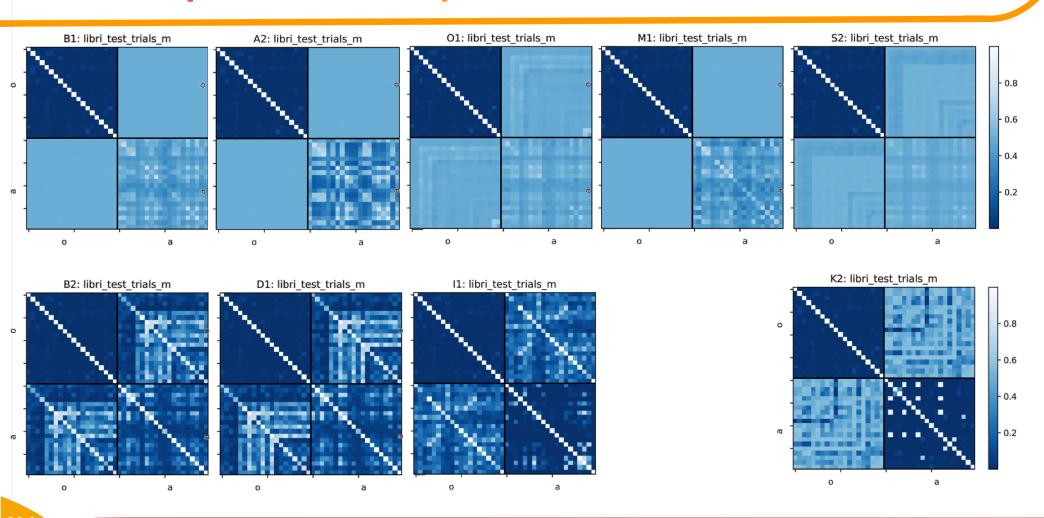
Voice Distinctiveness Preservation:

DeID =
$$1 - \frac{D_{diag}(M_{OP})}{D_{diag}(M_{OO})}$$
 $G_{VD} = 10\log_{10}\left(\frac{D_{diag}(M_{PP})}{D_{diag}(M_{OO})}\right)$

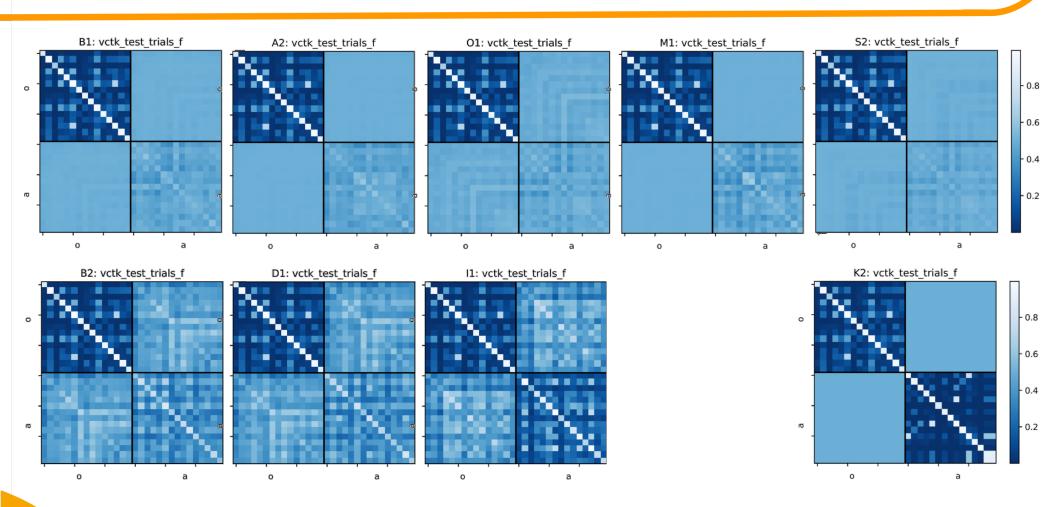
Where the diagonal dominance of a matrix M is defined as:

$$D_{diag}(M) = \left| \left(\sum_{1 \le i \le N} \frac{S(i,i)}{N} \right) - \left(\sum_{\substack{1 \le j \le N \\ 1 \le k \le N \\ j \ne k}} \frac{S(j,k)}{N(N-1)} \right) \right|$$

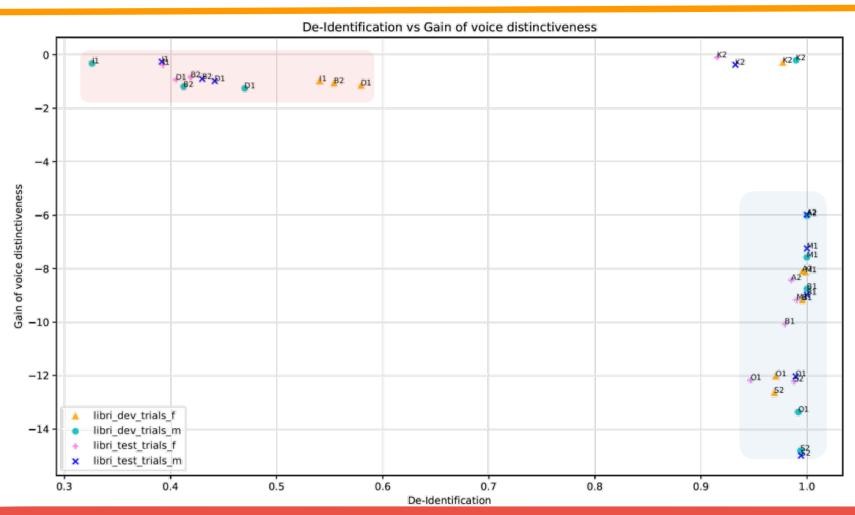
Similarity matrices: LibriSpeech-test-male



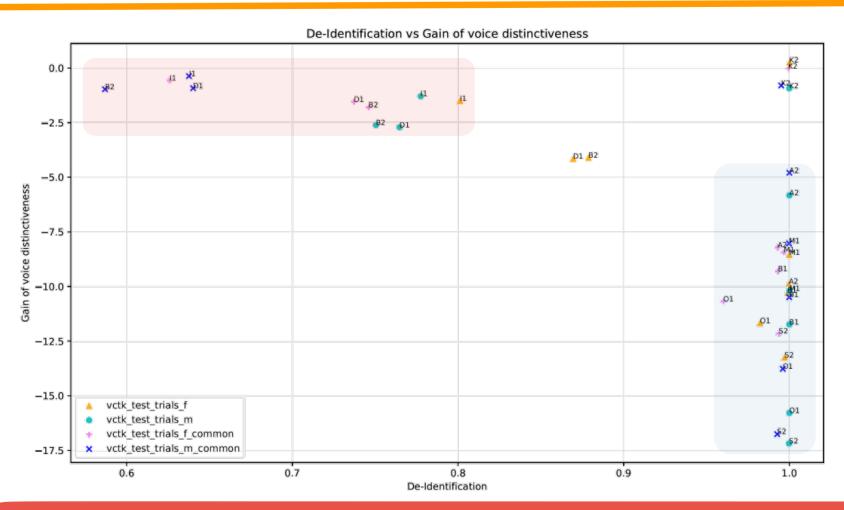
Similarity matrices: VCTK-test-female (different)



De-Identification & Gain of voice distinctiveness: LibriSpeech



De-Identification & Gain of voice distinctiveness: VCTK



Conclusions

Voice Similarity matrices

- ✓ Assess visually the De-Identification and Voice Distinctiveness,
- ✓ Differences of performance across speakers.

Two Metrics from the diagonals comparison

- ✓ Global De-Identification (DeID),
- ✓ Global Voice Distinctiveness Preservation (VDP),
- ✓ Most systems perform well either on DeID or on VDP but hardly on both.