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Abstract

Anonymizing speaker individuality is crucial for ensuring voice
privacy protection. In this paper, we propose a speaker individ-
uality anonymization system that uses singular value modifi-
cation and statistical-based decomposition on an x-vector with
ensemble regression modeling. An anonymization system re-
quires speaker-to-speaker correspondence (each speaker corre-
sponds to a pseudo-speaker), which may be possible by mod-
ifying significant x-vector elements. The significant elements
were determined by singular value decomposition and variant
analysis. Subsequently, the anonymization process was per-
formed by an ensemble regression model trained using x-vector
pools with clustering-based pseudo-targets. The results demon-
strated that our proposed anonymization system effectively im-
proves objective verifiability, especially in anonymized trials
and anonymized enrollments setting, by preserving similar in-
telligibility scores with the baseline system introduced in the
VoicePrivacy 2020 Challenge.

Index Terms: speaker anonymization, x-vector, singular value
modification, statistical-based decomposition, ensemble regres-
sion modeling

1. Introduction

As speech is generally preferred over text communication,
voice-input features have become widely implemented in recent
technology. However, voice recordings can contain personal,
sensitive information, which may lead to security and privacy
risks when exposed [1]. Such risks are due to advancements in
speech synthesis and conversion technology that have enabled
increasingly accurate voice cloning even with limited speech
samples [2, 3]. Consequently, there have been growing efforts
to preserve voice security and privacy, one of the main proposed
approaches being speaker anonymization.

Speaker anonymization or de-identification is a method
for suppressing or concealing speaker identity in their speech
data [4]. According to the VoicePrivacy 2020 Challenge [5],
the following four requirements are important for a speaker
anonymization system: (i) the speaker identity must be hidden,
(ii) the output speech should be natural and intelligible, (iii) the
language information should be preserved, and (iv) a speaker-
to-speaker correspondence must be followed.

Several methods have been proposed for anonymization
systems [1, 4, 6, 7, 8]. Previously, an anonymization system
was developed by suppressing speaker identity using a voice
transformation system [6, 7]. For instance, a diphone-based
syntactic source speech (kaldiphone) is transformed to fit a set
of speakers to attack the speaker identification system. It was
suggested that this voice transformation could fluster the Gaus-
sian mixture model (GMM) based speaker identification system

[6]. Subsequently, a voice transformation method to de-identify
speech using GMM mapping and harmonic-stochastic models
was proposed [8]. De-identification of online speakers was fea-
sible with this method. Next, a technique for concealing speaker
identity through voice transformation was developed using the
natural speech of a target person instead of a synthetic voice [9].
Another approach was implemented using cepstral frequency
warping plus amplitude scaling to transform speech and hide
the identity [10].

Fang et al. [4] proposed a method based on a neuro source-
filter (NSF) model to separate the speaker identity and the lin-
guistic content from the input speech before resynthesizing the
speech data with modification of speaker identity information
(x-vector). This method is referred to as the first baseline system
in the VoicePrivacy 2020 Challenge [5]. The x-vector was cho-
sen since it could effectively encode speaker identity as a feature
in speaker verification system [11]. In the first baseline system,
the original x-vector was replaced with the mean x-vector from
the farthest x-vector group in the anonymization x-vector pool.
On the other hand, our proposed method offers two different
approaches for anonymizing speaker identity information (x-
vector): (1) modifying its singular value, and (2) decomposition
based on the x-vectors’ statistical properties and transforming it
with ensemble regression models. We predicted that by modify-
ing the significant elements of x-vectors, the speaker-to-speaker
correspondence requirement of anonymization system could be
satisfied. Furthermore, we investigated the performance of the
synthesis system to improve the quality of anonymized speech.

The rest of this paper is organized as follows. Section 2
describes the proposed anonymization system in detail. Section
3 presents the experimental setup and results of the proposed
method. Finally, Section 4 presents the conclusion and future
work.

2. Proposed Model

Figure 1 shows our proposed model for a speaker anonymiza-
tion system. The analysis and synthesis framework from input
speech to anonymized system using an x-vector and a neural-
source filter (NSF) model were based on the first baseline sys-
tem in Voice Privacy 2020 Challenge [4, 5, 12]. Four pre-
trained models were employed in the baseline system, including
an ASR acoustic model [4, 13] for extracting linguistic-related
features or bottleneck (BN) features, an x-vector extractor [11]
trained by VoxCeleb datasets [14, 15], a speech synthesis acous-
tic model [4], and an NSF [16] for generating a speech signal
with FO, Mel-filterbank, and an anonymized x-vector as input.
We modified the baseline model by replacing the FO extrac-
tor with the one provided by another speech analysis toolkit.
The experiment by Morise et al. demonstrated that WORLD
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singular-value decomposition

provides computationally intensive and robust FO estimation
[17]. Furthermore, SPTK gives the relatively best precision
with other FO extractors, including Yaapt (Kaldi) [18]. There-
fore, we investigate the FO extractors from WORLD [17] and
SPTK [19] in this study.

We propose two approaches for anonymizing the x-vector:
(1) modifying the singular value of the input x-vector, and (2)
decomposing the input x-vector based on its statistical proper-
ties and transforming it with regression models.

2.1. X-vector Anonymization using Singular Value Modifi-
cation

The first approach is based on the concept of matrix factoriza-
tion using singular value decomposition (SVD), which has a
variety of applications such as recommender systems and data
reduction [20]. SVD provides the constituent elements of the
matrix; the modification of the x-vector matrix singular values
from a speaker is expected to provide the anonymized x-vector
with similar constituent elements that represent intra-speaker
information. Figure 2 shows our proposed x-vector anonymiza-
tion process. Each step is explained in detail below.

X-vector Pool Construction. First, we constructed the x-
vector pool to obtain the input x-vector and pseudo target x-
vector. The pseudo target x-vector was determined from the
least similar centroid using a clustering method.

Matrix Formation. An x-vector matrix (X) was con-
structed using the x-vectors of all available utterances of a
speaker. The output is the x-vector matrix for the pseudo tar-
get x-vectors with dimension M x N, where M is the number
of utterances and N is the dimension of x-vector (512).

Singular Value Decomposition (SVD) and Modification.
The pseudo target x-vector matrix obtained from the previous
step was decomposed into two singular matrices and a diagonal
singular values matrix. The decomposition is expressed as:

X =UxV", )

where U and V are the orthonormal eigenvectors of XX and

of X™X, respectively, and 3 consists of the square roots of the
eigenvalues of XX,

In our approach, we interpreted U as the utterance-to-
concept similarity matrix, and V as the x-vector-to-concept
similarity matrix. 3 represents the strength of each concept
involved. By reducing the dimension of X, we expect to ob-
tain more general constituent elements of the x-vector. Thus,
x-vector anonymization is conducted by controlling 3 with a
threshold parameter (singular value threshold). Figure 3 shows
the anonymization of an x-vector singular value.

X-vector Reconstruction. Lastly, the anonymized x-vector
of a speaker’s utterance was obtained from the anonymized x-
vector matrix reconstructed from U, V, and the modified 3.

2.2. Statistical-Based Regression Modelling

Figure 4 shows the second approach of our anonymization sys-
tem, which comprises the following four steps:

X-vector Variant-based Decomposition. First, the variant
of intraspeaker x-vectors in x-vector pool 1 was analyzed to
observe the distribution of the x-vector of a speaker in differ-
ent utterances. The standard deviation of the intraspeaker x-
vectors were calculated with a given threshold to decompose
the x-vector into two parts, i.e., high-variant x-vector (y;) and
low-variant x-vector (z;). This decomposition is based on our
hypothesis that the low-variant x-vector is a stable part of the
x-vector that contains the uniqueness of the speaker identity;
therefore, it is an important cue for one-to-one mapping from
the original to anonymized speech.

Anonymization Pool Construction. After the x-vector was
decomposed into high and low-variant parts, we built clustering
models to create pseudo-target x-vectors. The clustering model
was trained using x-vector pool 2. The clustering model pro-
duced several centroids which are assigned as the candidates
of the pseudo-target x-vectors. The pseudo-target x-vector was
determined by the centroid least similar to the pseudo-input x-
vector. The pseudo-target x-vectors were fit into a regression
model in two consecutive processes, and then pairs of pseudo
input-target x-vectors were fit into the regression model. In
other words, we defined the x-vectors pairs as our anonymiza-
tion pool.

Ensemble Learning for Regression Modeling. Two en-
semble regression models were constructed by fitting the
anonymization pool x-vectors. A non-linear regression model
was trained for the high-variant x-vector, and a linear regres-
sion model was trained for the low-variant x-vector. We pre-
dicted that by transforming the low-variant x-vector linearly, the
uniqueness of each speaker’s x-vector could be preserved. In
other words, we fit a linear function (2, = Az; + B) for trans-
forming the original low-variant x-vector (2) to the anonymized
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Figure 3: Modification of x-vector singular values

Anonymization pool

“x-vector
pool 2

Clustering
Model

pseudo-target
x-vector

pseudo-input
x-vector

—

X-vector
pool1

~ -

\ \/

x-vector

x-vector
variant
ELENEH

Non-Linear
Regression
Model

Anonymized
x-vector

X512

high-variant
anon. x-vector

recons-
truction

Linear
Regression
Model
1
Anonymization

pool

low-variant
x-vector

low-variant
anon. x-vector

Figure 4: Schematic diagram of x-vector modification by
statistical-based ensemble regression modeling. The dimen-
sions of high-variant x-vector and low-variant x-vector are m
and n, respectively (with m +n = 512).

low-variant x-vector (z"). The subscript i in z; represents the in-
dex of z, while A and B are constants obtained from the training
process with the low-variant anonymization pool. The original
high-variant x-vector (y) was transformed to the anonymized
high-variant x-vector (y") with a non-linear regression model
trained by the high-variant anonymization pool. From this step,
two pre-trained regression models were obtained.

Anonymized X-vector Reconstruction. Lastly, we concate-
nated the high-variant and low-variant anonymized x-vectors
(' and 2’) to form the anonymized x-vector ().

3. Experiments
3.1. Datasets

All datasets utilized in the experiments were based on the
VoicePrivacy 2020 Challenge [12]. Table 1 shows the train-
ing data used as our x-vector pools. In the variant analysis,
we randomly selected subsets of libriTTS train-other-500 and
train-clean-100 [21] with 30 utterances from each speaker (with
30 total speakers per dataset). The full set of x-vectors ex-
tracted from train-other-500 was then utilized in the singular
value (SV) pool and pool-2. In x-vector pool-2, we also utilized
the full set of train-clean-100. We fit our regression models
with 95% of the total data and the remaining 5% was used to
evaluate our models by R? score and root-mean squared error
(RMSE). The development and test sets of LibriSpeech (Libri)
[22] and VCTK [23] were utilized to evaluate speaker verifia-
bility (ASVeval) and intelligibility (ASReval).

Table 1: Training data for x-vector pools

Subset LibriTTS (x-vector) Female Male Total #Utter
SV nool train-clean-100 123 124 247 33,236
p train-other-500 560 600 1160 205,044
00l-1 train-clean (rand) 15 15 30 600
P train-other (rand) 15 15 30 600
00l-2 train-clean-100 123 124 247 33,236
p train-other-500 560 600 1160 205,044

Table 2: Comparison of FO extractors in terms of intelligibility
assessment

WER (%)
Subset  Data —-o5t—DIO  Harvest RAPT SWIPE
Libri ori 383 382 3.82 3.82 3.82
(dev) resyn 6.5 6.77 6.52 6.59 6.41

3.2. Experimental Setup

The main part of our experiment was conducted using the Kaldi
toolkit [24]. WORLD and Speech Processing Toolkit (SPTK)
were used to extract FO. We investigated four different FO es-
timation algorithms, i.e., DIO and Harvest from WORLD, and
RAPT and SWIPE from SPTK. In addition, we used Scikit-
learn [25] to construct the machine learning model for our
anonymization system.

To generate the anonymization x-vector pool, we employed
a Gaussian mixture model as our clustering model. We investi-
gated the variation in the number of clusters and the measured x-
vector similarity (cosine distance or probabilistic linear discrim-
inant analysis (PLDA)) to build the anonymization pool as the
input for the regression model. Consequently, we built gender-
dependent regression models that mapped the high-variant and
low-variant parts (as in second approach) of the x-vector. The
RandomForest algorithm was used as the regression models for
the high-variant x-vector. RandomForest uses ensemble learn-
ing and can produce a highly accurate model and control over-
fitting even when the amount of data is large [25]. In our experi-
ment, we tuned the RandomForest regressor parameters, i.e., the
number of estimators (nest) and maximum depths (maxXdepth)-
Our final model used nesy = 10 and the default maxgeptn from
scikit-learn since it performed oprimally in our evaluation (in
predicting 5% of the training data). For the low-variant x-vector
linear regressor, we investigated several pairs of constants A
and B for each gender obtained from the parameter variation
used while constructing the anonymization pool.

3.3. Results

We evaluated each component of our proposed model by con-
ducting an ablation test. Table 2 shows the evaluation of the
resynthesis process using NSF with several FO estimators (Kaldi
(Yaapt), WORLD (DIO and Harvest), and SPTK (RAPT and
SWIPE)). The intelligibility assessment (ASReval) was con-



Table 3: Ablation test on proposed model in terms of objective speaker verifiability. The anonymization system was built using a
RandomForest regressor which trained by anonymization pool with GMM clustering with 200 centroids and PLDA scoring. For
anonymization model 1, the singular value threshold was between 10% to 20%. The FO was extracted by the SWIPE algorithm in
SPTK. Since the results of model 1 were more optimal than model 2, only the combination of FO modification with model 1 is reported

in this table. Gen stands for gender (F: female and M: male).

Anonymization F0 (Resynthesis)

‘ Dataset ‘ Gen

Anon. Model 1

Anon. Model 2 FO0 + Anon. Model 1

Enroll | Trial | EER (%) Tir Mir | EER (% Tir ir | EER (%) Tir Tir | EER (% Tir Tir
o ori .67 031 | 4293 367 031 | 4293 867 031 | 4293 367 031 | 42.93

F 27.56 0.77 | 116.28 51.99 1.00 | 147.21 47.16 0.99 | 167.31 50.99 1.00 | 145.09

Libri anon anon 22.02 066 | 1425 32.95 086 | 1425 33.10 087 | 1678 3381 087 | 1355
(dev) - ol 1.24 004 | 1428 1.24 0.04 | 1428 1.24 0.04 | 1428 1.24 0.04 | 1428
M on 24.84 072 | 115.02 58.70 1.00 | 17042 56.37 1.00 | 167.00 55.90 1.00 | 167.71

anon anon 20.34 060 | 854 7888 0.78 | 1843 3385 087 | 2334 29.19 079 | 1792

o orf 7.66 0.18 | 2680 7.66 0.18 | 26.80 7.66 0.18 | 2680 7.66 0.18 | 26.80

F ) 2755 073 | 117.11 4872 1.00 | 151.98 50.00 1.00 | 16524 47.99 1.00 | 152.84

Libri anon anon 18.80 058 | 10.77 7865 078 | 1273 31.02 081 | 1697 78.10 0.76 | 1091
(test) o orf 1.11 004 | 1534 1.11 004 | 1534 111 004 | 1534 1.11 004 | 1534
M non 21.38 0.66 | 121.58 54.34 1.00 | 168.93 50.78 1.00 | 165.51 51.45 1.00 | 166.52

anon 19.82 0.61 9.29 30.73 081 | 240 3474 089 | 33.00 3118 081 | 21.89

o ori 262 009 | 087 262 0.09 | 0387 262 009 | 087 262 009 | 0387

VCTK F non 30.81 0.80 | 98.98 50.87 100 | 167.48 4971 0.99 | 184.60 50.00 100 | 163.63
common anon 18.02 053 | 572 2447 070 | 7.12 2384 072 | 944 7558 073 | 807
dov) o o 143 0.05 1.57 1.43 0.05 1.57 143 0.05 1.57 1.43 0.05 1.57
M anon 23.36 0.63 | 110.95 57.26 1.00 | 191.60 52.99 1.00 | 189.56 5527 1.00 | 188.91

anon 1338 043 | 633 7593 071 | 1820 31.05 082 | 2244 7849 075 | 1638

o orf 292 010 | 1L.I5 292 0.10 | 105 292 010 | IL.I5 292 0.10 | 105

VOTK F non 30.60 0.79 | 113.40 50.70 0.99 | 16437 50.53 097 | 175.98 50.76 0.99 | 162.20
dift anon : 16.56 053 | 4.66 26.78 077 | 8.72 2852 08T | 1214 2650 0.77 | 8.99
(dev) o o 1.44 005 | 116 1.44 0.05 1.16 1.44 0.05 1.16 1.44 0.05 1.16
M non 2243 0.69 | 104.46 55.98 1.00 | 166.42 52.56 100 | 164.59 54.74 100 | 163.99

anon 15.73 052 | 1028 2531 0.74 | 1828 30.22 083 | 2175 27.20 078 | I18.17

o ori 2.89 0.09 | 086 2.89 0.09 | 086 2.89 0.09 | 086 2.89 0.09 | 086

VOTK F anon 27.17 074 | 89.41 48.84 0.99 | 157.68 46.82 0.99 | 15528 48.55 0.99 | 157.68
common anon 21.10 060 | 588 7861 080 | 881 3237 086 | 1086 7861 080 | 882
(tost) o orf 1.13 004 | 1.03 1.13 004 | 1.03 1.13 004 | 1.03 1.13 004 | 1.03
; M anon 21.75 0.64 | 118.50 55.65 1.00 | 186.48 53.39 1.00 | 187.84 55.37 1.00 | 186.50
anon 186 040 | 478 2034 062 | 9.79 7853 078 | 1991 2034 062 | 9.78

o o 799 0.17 1.50 499 0.17 1.50 799 0.17 1.50 499 0.17 1.50

VCTK F anon 27.78 077 | 97.37 49.64 1.00 | 142.88 48.10 1.00 | 140.78 49,54 1.00 | 142.87
dif anon 1821 058 | 695 32.66 087 | 1136 3467 090 | 12.20 3277 087 | 11.36
(test) o o 2.07 007 | 1.82 2.07 007 | 182 2.07 0.07 1.82 2.07 007 | 182
M anon 26.98 075 | 112.89 5431 1.00 | 164.68 52.76 1.00 | 166.21 5431 1.00 | 164.69

anon 16.65 054 | 994 2181 067 | 1326 3032 086 | 2154 2181 067 | 1325

Table 4: Speaker intelligibility attained by the pretrained AS-
Reval model

WER (%)
Subset | Data |5 Znon T | Anon2 | FO+Anon T
Libri ori 3.82 3.82 3.82 3.82
(dev) anon 6.41 6.67 6.4 6.41
Libri ori 4.15 4.15 4.15 4.15
(test) anon 6.78 6.76 6.63 6.78
VCTK | ori 10.79 10.79 10.79 10.79
(dev) anon | 15.35 15.46 15.55 15.16
VCTK | ori 12.81 12.81 12.81 12.81
(test) anon | 15.21 15.31 15.65 15.32

ducted using the LibriSpeech development set. Table 3 shows
the evaluation results for speaker verifiability, which include
equal error rate (EER) and log-likelihood-ratio cost function
(ClIr) metrics of the system from FO modification (only resyn-
thesis), for both anonymization models and a combination of FO
modification and the anonymization model. Additionally, Table
4 shows the objective intelligibility evaluation in terms of word
error rate (WER) in the ASR evaluation system (ASReval).

The results highlight two main findings. First, speech dis-
tortion occurs in the analysis-synthesis process using NSF with
an x-vector. When only resynthesis was conducted, the intelligi-
bility metric of the output speech decreased (WER increased),
as shown in Table 2. The performance of several FO extrac-
tors were not significantly affected in terms of objective in-
telligibility metric. Since the resynthesis process tends to al-
ter the speech, the resynthesis process itself contributes to the
anonymization process, as shown in Table 3 (FO (resynthesis)
ASVeval). The ASV objective metrics of anonymization in

the pair enrollment-trials, ori-ori and ori-anon, differed signifi-
cantly (e.g., EER rate increased by more than 15% in all cases).
Second, our proposed anonymization model improved the ob-
jective anonymization metrics compared with when only resyn-
thesis was used. Compared with the first baseline system, our
proposed method (first approach) was more effective but not
significantly so in terms of the objective verifiability metrics.
We predict that this limitation is caused by the limited amount
of training data and the similarity in the main frameworks of the
analysis-synthesis process of the baseline system.

4. Conclusion and Future Work

We proposed two x-vector anonymization approaches: singu-
lar value modification and statistical-based decomposition with
regression models. The main concept was that one-to-one map-
ping from input speech to anonymized speech could be obtained
by modifying the significant elements of the x-vector. The
evaluation results demonstrated that our proposed anonymiza-
tion system was effective in increasing the anonymization rate
(ASVeval) compared with resynthesis only. We intend to in-
crease the amount of training data and study state-of-the-art re-
gression models for anonymizing x-vector to improve our sys-
tem. We will also investigate how to construct an analysis-
synthesis system that better suits the anonymization process.
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