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Abstract
The most crucial information exploited by an Automatic
Speaker Verification (ASV) system is the speaker’s identity
(although implicitly). If privacy preservation is exercised for
a speaker’s identity, numerous attacks can be obliterated si-
multaneously. The baseline-2 of the Voice Privacy Challenge
2020 uses the Linear Prediction (LP) model of speech, and
McAdam’s coefficient for achieving speaker de-identification.
It focuses on altering only the pole angles using McAdam’s
coefficient. However, from speech acoustics and digital res-
onator design, - 3dB bandwidths (and hence, z-domain pole
radius) associated with formants capture information about var-
ious energy losses (that implicitly carry speaker-specific infor-
mation) during speech production. To that effect, the authors
have brought fine-tuned changes in both pole angle and pole ra-
dius, resulting in 18.98% higher value of EER for Vctk-test-com
dataset, and 5% lower WER for Libri-test dataset compared to
the baseline. This means privacy-preservation is indeed im-
proved by our approach. Furthermore, gender-based analysis
of the obtained results reveals that our approach leads to better
speaker anonymization for females as compared to male speak-
ers.
Index Terms: Voice Privacy, speaker de-identification,
anonymization, linear prediction, design of digital resonator.

1. Introduction
An Automatic Speaker Verification (ASV) system is used for
authentication of claimed identity of a speaker doing analysis
on speech utterances with the help of machines [1]. Boldness
in performance of an ASV system is desired mainly in terms of
functionality of speaker verification and security (i.e., robust-
ness from spoofing). With the evolution of various of spoof-
ing attacks, such as voice conversion [2, 3], replay [4, 5], and
mimicry attacks [6], development of several measures against
spoofing attacks has also been prioritized in the recent years.
Attacker exercises these attacks to impersonate and pretend to
be a genuine speaker and hence, the attacker can successfully
access sensitive information, where authentication via ASV is
required to access it. If the speech data of users is published
publicly without applying any privacy preservation measures
[7], it is left susceptible to various spoofing attacks and then
the attacker might gain illegal access to the information related
to speakers’ identities to attack the ASV system [8, 9]. There-
fore, if the speech data is anonymized such that even if the at-
tacker gains an illegal access to it, it would be impossible to
extract any information about users’ identities [8]. However,
qualities of the speech signal such as naturalness and intelligi-
bility along with the speakers’ identities should remain intact.
This can be achieved by effective Voice Privacy (VP) system,
also called as speaker de-identification. anonymization [10].
For de-identification, two main approaches have been given as

baseline-1 and baseline-2 in the Voice Privacy Challenge 2020
[11–13]. Baseline-1 is about anonymization using x-vectors and
neural waveform models, while baseline-2 is about anonymiza-
tion using McAdam’s coefficient. It should be noted that, cryp-
tography algorithms, can also be useful for achieving voice pri-
vacy, however, they are not used due to their difficulty to install,
and their complexity increases the overall computational cost of
implementation [11, 14–17].

Baseline-2 achieves speaker de-identification by shifting
position of the formant frequencies. From speech acoustics,
vocal tract walls are prone to bending and show movements
under acoustic pressure induced by sound propagation. Thus
due to presence of various energy losses (such as wall vibra-
tion, thermal and viscosity, lip radiation and glottal boundary),
there is some movements in the vocal tract walls which leads
to increase in −3dB bandwidths of formants, and these losses
contribute implicitly to speakers’ identities. To that effect, we
varied angles and radius of the complex z-domain poles, which
contribute to shift in formant frequencies and widening of for-
mant peaks, respectively.

The rest of this paper is organized as follows. Section 2
gives the details of the notion and logic used related to the pro-
posed speaker anonymization method. Section 3 describe the
experimental setup and present the results. Finally Section 5
summarizes and concludes the work done in the paper.

2. LP-Based Resonator Design
2.1. Speech Production Model

According to [18], production of the voiced speech can be mod-
eled as H(z) = G(z)V (z)R(z), where G(z) is the transfer
function of the glottal pulse system, V (z) is the transfer func-
tion of the vocal tract system, and R(z) is the lip radiation.

The vocal tract system, V (z) is modeled as the cascading of
2nd order resonators (equation (1)), and thus the overall H(z)
is given in equation (3) [19]:

V (z) =
G∏N/2

k=1(1− 2rkcosθkz−1 + r2kz
−2)

, (1)

H(z) =
G

1−
∑p
k=1 akz

−k , (2)

where G is the gain of H(z), rk and θk are the pole radius and
pole angle, respectively, of kth pole-pair. One of the first study
in speaker recognition by L. G. Kersta states that resonance is
defined as reinforcement of spectral energy at or around a par-
ticular frequency [20]. And if we consider first four formant
frequencies then corresponding vocal tract is a cascade of 4 2nd

order digital resonators. The shape of the vocal tract system
can be specified with resonant frequencies. The spectrum of
the vocal tract system, H(z), consists of peaks located at the



formant frequencies (also called as formants) [21]. Mathemati-
cally, H(z) is given by equation (3) and equation (4).

H(z) =

4∏
i=1

Hi(z), (3)

where each Hi(z) is a 2nd order resonator. Transfer function
for 2nd order resonator is given by:

Hi(z) =
1

(1− p1z−1)(1− p2z−1)
, (4)

p1 and p2 are the complex conjugate pole-pair of 2nd order
resonator transfer function. At resonance, |Hi(ejω)| will be
maximum therefore,

d|Hi(ejω)|
dω

= 0, (5)

We can solve equation (5) to get the resonant frequency, ωr as,

ωr = cos−1[
1 + r2

2r
cosωo]. (6)

When r → 1 the resonant frequency, ωr is approximately equal
to the pole angle. The impulse response of a 2nd order digital
resonator is given by,

hi[n] = Krn sinωo(n+ 1)u[n], (7)

where r is the pole radius, andK is the overall gain. The−3dB
bandwidth of the formant is inversely proportional to the pole
radius. Hence, the quality (Q)-factor of the resonator is de-
pendent on the pole radius. When radius of the pole is unity
then the corresponding formant will have the edged resonance
resulting in nearly zero −3dB bandwidth. On the other hand
practically all the resonators are considered to be stable (i.e.,
r < 1 in Z-plane). So we will not achieve a sharp resonance
like an impulse, rather we will have some finite −3dB band-
width around the formants. This relation between pole radius
and −3dB bandwidth can be derived from mapping of stable
Laplace domain pole to stable Z-domain pole as given below,

r = e−πBT , (8)

where B is the −3dB bandwidth (in Hz), and T is the
sampling interval (in seconds). For anonymization if ra-
dius is decreased, the bandwidth will increase compared to
original bandwidth(without anonymization). The gain which
was concentrated around their central (resonant) frequency be-
fore anonymization will now spread around the central fre-
quency(i.e., will tend towards resonance breakdown) instead of
the sharp peaks. Hence, the formants will not be easily dis-
cernible after anonymization using this method, thus speaker
identification will be more effortful.

We can consider the speech model as an all-pole model.
One such all pole model is LP model, which predicts the current
sample of speech, x[n] using the past p samples of the speech
[22]. The LP model is given by

x̃[n] = a1x[n− 1] + a2x[n− 2] + ...+ apx[n− p], (9)

where a1, a2, ..., ap are called as LP coefficients. Thus a speech
sample can be approximated as a linear combination of the past
speech samples [23]. The system function for pth order predic-
tor is given as

P (z) =

p∑
k=1

αkz
−k. (10)

The prediction error or LP residual sequence is given by equa-
tion (11), and associated prediction error filter is defined in
equation (12),

e[n] = x[n]− x̃[n] = x[n]−
p∑
k=1

αkx[n− k], (11)

A(z) = 1−
p∑
k=1

αkz
−k = 1− P (z). (12)

We can recover the input sequence s[n] by passing Aug[n]
through 1

A(z)
, where Aug[n] is vocal tract input with gain A.

This can be done when αk ≈ ak, so the prediction error filter,
A(z) is sometimes called the inverse filter. This inverse filtering
at least suppress the formants of speech signal, and the remain-
ing signal is called LP residual. It is used as excitation source
signal that is used to excite a filter (representing formants) for
speech generation (after anonymization in our case).

In this context using system theory, we can fine tune the
residual or formants to change the resulting speech signal char-
acteristics.

2.2. Formants and speaker de-identification

In an all-pole model of the vocal tract, a complex pole-pair
at r0ejw0 and r0e−jw0 corresponds to a vocal tract formant.
A male speaker tends to have lower formants than a female
speaker [18]. Because an increase in the length of the vocal tract
system corresponds to decrease in formant frequencies [24].

In a LP model, the LP coefficients a′is are responsible for
pole locations. The formant frequency and bandwidth are gov-
erned by the pole locations [25]. Mathematically, formant fre-
quency is given by Fsθ

2π
, where θ is the angle of the pole in

radians, given Fs is the sampling frequency in Hz. The formant
bandwidth is given by Fs

π
(−log(r)), where r is the radius of

the pole [18]. As proposed by M.R. Schroeder, the ability of
human beings to emit and perceive sounds is more dependent
on spectral peaks than spectral valleys [26]. The formants of
speech signal are obtained from these spectral peaks. So by
modifying the formant frequencies, we can achieve different
modifications of formant spectrum and thus, leading to speaker
de-identification along with naturalness and intelligibility.

To anonymize a speaker, a controlled shift in pole angle
and radius can be done, such that intelligibility is not lost and
the speaker identity is mapped to another voice. Since every
complex pole conjugate pole-pair corresponds to one formant
frequency [27], only one of the poles in the pair is considered
for de-identification [28]. In the given baseline, pole angles are
shifted by a McAdam’s coefficient with a value of 0.8 initially
[11, 12, 29].

3. Performance Evaluation
The baseline- 2 system along with the improved experimental
results and analysis is included in this section. The objective
performance is measured in terms of Equal Error Rate (EER),
and Word Error Rate (WER) to evaluate anonymization and
speech intelligibility, respectively [30]. An ASV system which
relies on x-vector speaker embeddings and, Probabilistic Lin-
ear Discriminant Analysis (PLDA)is used to compute the EER
scores [31].



# \Dev. set \EER, % \Cminllr \Cllr \Enroll \Trial \Gen \Test set \EER, % \Cminllr \Cllr
1 libri dev 8.665 0.304 42.891 o o f libri test 7.664 0.184 26.812
2 libri dev 32.950 0.807 115.483 o a f libri test 25.730 0.691 119.399
3 libri dev 24.290 0.652 15.379 a a f libri test 15.880 0.511 15.183
4 libri dev 1.242 0.035 14.246 o o m libri test 1.114 0.041 15.340
5 libri dev 19.570 0.579 112.062 o a m libri test 17.370 0.493 110.935
6 libri dev 11.180 0.368 15.765 a a m libri test 8.909 0.275 21.850
7 vctk dev com 2.616 0.089 0.872 o o f vctk test com 2.890 0.092 0.867
8 vctk dev com 33.140 0.864 100.451 o a f vctk test com 29.770 0.797 107.716
9 vctk dev com 10.760 0.349 43.631 a a f vctk test com 17.050 0.502 47.549

10 vctk dev com 1.425 0.049 1.560 o o m vctk test com 1.130 0.036 1.029
11 vctk dev com 24.500 0.666 97.415 o a m vctk test com 27.680 0.723 107.513
12 vctk dev com 12.540 0.393 34.154 a a m vctk test com 12.990 0.389 36.018
13 vctk dev dif 2.864 0.101 1.150 o o f vctk test dif 4.990 0.170 1.499
14 vctk dev dif 33.860 0.897 102.523 o a f vctk test dif 29.420 0.798 103.744
15 vctk dev dif 13.870 0.450 44.237 a a f vctk test dif 18.470 0.580 49.801
16 vctk dev dif 1.390 0.052 1.162 o o m vctk test dif 2.067 0.072 1.826
17 vctk dev dif 26.450 0.732 101.214 o a m vctk test dif 27.150 0.729 111.908
18 vctk dev dif 13.350 0.433 36.581 o a m vctk test dif 12.630 0.425 35.185

Table 1: EER results of the approach: Shifting radius to 0.975 to its value and McAdam’s coefficient=0.8 for development and test data
(o – original, a – anonymized speech data).

# Dev. set WER, % Data Test set WER, %
\LMs \LMl \LMs \LMl

1 libri dev 11.76 8.60 a libri test 11.37 8.43
2 vctk dev 29.09 24.58 o vctk test 32.26 27.01

Table 2: WER results of the approach: Shifting radius to 0.975
to its value and McAdam’s coefficient=0.8 for development and
test data (o-original, a-anonymized speech) for two trigram
LMs: LMs - small, and LMl - large LM.

3.1. The Baseline System and Proposed Improvement

In the baseline system LP analysis of speech is performed,
which results in frame-by-frame (with 50% overlap) generation
of LP coefficients and LP residual. Then using these LP coef-
ficients poles are obtained. Anonymization is achieved by con-
sidering only one pole out of the complex pole-pair and shift-
ing the poles’ angle φ by a constant known as the McAdam’s
coefficient, α [29]. The new pole angle is φα. The residuals
are unchanged to retain the naturalness and intelligibility, and
are used in the reconstruction of the anonymized speech signal.
Depending on the values of φ and α, the pole is shifted either
in positive or the negative direction. The effect of pole shifting
in z-plane is detailed in the evaluation plan for two values of α,
greater and less than 1.

The radius of the poles is also reduced along with the mod-
ification in pole angles, so that intelligibility is not lost, while
achieving speaker de-identification. However, The baseline in-
volves shifting of only pole angles for anonymization. Two ap-
proaches of speaker anonymization is described in this section.
First approach includes shifting of the pole locations by chang-
ing only the radius of the pole while keeping the pole angle
untouched. In the second approach changing both the pole ra-
dius, and the pole angle is considered to shift the pole locations.
In the first set of experiments, the radius of the each pole is de-
creased by arbitrarily chosen amount of 15%, 5%, and 2.5% of
pole radius that is measured from the original utterances. In the
second set of experiments, the radius is changed by the same
amount as in the first set of experiments, and also the angle of
the poles is shifted by McAdam’s coefficient with values of 0.8

and 0.9. Tables 1 and 2 shows the results of the proposed ap-
proach. The detailed discussion on results are included in the
next Section.

The amount of anonymization is evaluated using a x-vector
speaker embedding-based ASV system, which gives two objec-
tive metrics : Equal-Error-Rate (EER) and Caliberation Cost
(Cllr). For objective evaluation an assumption is made by
the attacker’s model that the attackers have access to a sin-
gle anonymized trial utterance and several enrollment utter-
ances. Also another assumption is made that the corresponding
pseudo-speakers of trial and enrollment utterances are differ-
ent [11, 12]. Therefore, a higher value of EER indicates bet-
ter anonymization. A TDNN-F acoustic model and a tri-gram
Language Model (LM) are used by an ASR system to measure
the intelligibility. It gives the intelligibility score in terms of
WER for small and large LMs. Lower value of WER indicates
better intelligibility. Both of these systems are trained on the
LibriSpeech-train-clean-360 dataset using Kaldi speech recog-
nition toolkit [32–34].

3.2. Experimental Results and Analysis

This Section presents the experimental results w.r.t. the
baseline-2 system. In the experiments, the radius and/or phase
of the poles of the speech signal derived using LP source-filter
model are varied. It should be noted that a high value of EER,
and a low value of WER is desired for speaker de-identification.

3.2.1. Pole Placement using only Pole Radius

Radius (r) was varied for three cases- 0.85r, 0.95r, and 0.975r.
No changes were introduced in the pole angles. It was observed
that when the radius was changed to 0.85 times the original ra-
dius, slightly better values of EERs were obtained (increased
by 3%) than the original baseline. However, WER values were
considerably degraded. When the radius was changed to 0.95
times the actual radius, undesirable values of the EERs were ob-
tained (decreased by 7 to 10) for most of the cases when com-
pared to the original baseline system. However, better values
of WER were obtained and were less by 15 for vctk dev and
vctk test datasets.



Figure 1: %EER for development data (o–original,
a–anonymized) for radius= 0.975 to its value, and α = 0.8,
F-Female, M-male.

Figure 2: %EER for test data (o–original, a–anonymized) for
radius= 0.975 to its value, and α = 0.8, F-Female, M-male.

Figure 3: % WER for development data (o–original,
a–anonymized) for radius= 0.975 to its value, and α = 0.8,
for two trigram LMs : LMs-small, and LMl-large LM.

3.2.2. Pole Placement using Pole Radius and Angle

When only the radius was changed to shift the pole locations,
it does not give appreciable results. Hence, the pole locations
were shifted by decreasing the pole radius by 2.5% along with
transformation of the pole angle from φ to φα, where α = 0.8.
In this case, improved results were obtained, both in terms of
EER and WER, as shown in Figs. 1, 2, 3 and 4. Furthermore,
if the pole radius was decreased by more than 2.5%, the per-
formance of the WER degraded drastically. Hence, with a new

Figure 4: % WER for test data (o–original, a–anonymized) for
radius= 0.975 to its value, and α = 0.8, for two trigram LMs
: LMs-small, and LMl-large LM.

radius which is 0.975% of the original radius and McAdam’s
coefficient as 0.8, we obtained relatively best results in terms of
EER and WER both.

The increase in EER we obtained by reducing the pole ra-
dius is justified by the relation of formant bandwidth with the
pole radius as described in the Section 2.2. The formant band-
width will increase when the radius is decreased since the pole
radius and formant bandwidth shares a logarithmic relation with
each other and also the value of r is less than 1. The qual-
ity factor (Q) of the speech signal will degrade due to the in-
crease in formant bandwidth and thus, it will get difficult for the
ASV system to identify the speaker. Hence, the ASV system
will give high EER value indicating the efficient transforma-
tion of the speakers’ identity in frequency-domain. Moreover,
speaker-specific information is obtained from formant frequen-
cies, therefore, pole angles were also shifted using McAdam’s
coefficient to improve the performance of the system. On shift-
ing the pole angles along with the change in pole radius, im-
proved results were obtained.

4. Summary and Conclusions
In the proposed work, authors have used LP model and
McAdam’s coefficient to achieve effective speaker anonymiza-
tion. The baseline-2 have used method of shifting only the pole
angles for achieving anonymization [11]. However, the pole ra-
dius is also significant in speaker de-identification. The pole
radius is related to different energy losses during production of
the natural speech and is related to −3dB bandwidth. Thus,
the authors have varied the pole radius along with the shift in
phase of the poles to get better anonymization. Along with the
proposed methods, other signal processing techniques can be
used for better anonymization, with the combination of neural
network-based approaches.
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