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Abstract

While more and more speech resources become publicly avail-
able, the privacy of the speakers needs to be taken care of,
in terms of anonymising the speaker information while pre-
serving the linguistic content. In these terms, this paper pro-
poses to use a recently developed deterministic and reversible
pseudonymisation method that uses signal processing based on
formant-shifting to hide the speaker identity. Evaluations on
speaker verification and speech recognition on the VoicePri-
vacy challenge data indicate that the method is better than the
McAdams coefficient based signal processing baseline given by
the challenge. We show that the proposed method preserves
formant tracks better than the McAdams method. We also show,
from the intelligibility computed using phone posterior probab-
ilities, that the proposed method preserves intelligibility com-
parably as the baseline.

Index Terms: speech processing, voice privacy, hand-crafted
features.

1. Introduction

More and more resources of speech data are shared on public
platforms each day. While personally identifiable information
such as name, age etc. of the speaker can be easily hidden,
speech itself remains as a personal identifier of the speaker.
With the advancements of speaker verification technologies,
it is possible that sensitive information related to vulnerable
speakers be extracted from their speech and be misused. Speech
anonymisation methods, thus, aim at decoupling the two parts
of a given utterance — what was spoken and who spoke it — and
preserve the former while destroying the latter. This work aims
at contributing to such novel speech anonymisation approaches,
and serves as a submission to the VoicePrivacy 2020 challenge
(L2,

Anonymisation aims at removing the identity related in-
formation from speech. Pseudonymisation is a type of an-
onymisation that is reversible, i.e. the speakers can be re-
identified using additional, e.g. private, information. A simple
anonymiser recognises the sequence of words spoken in a given
utterance and tries to automatically synthesise it. The primary
baseline of the challenge uses such an approach. However, in
doing so this may also destruct paralinguistic pieces of inform-
ation, such as the expressed emotions, articulation changes de-
pending on the speaking skills or pathological conditions, etc.
Thus, such an anonymisation may not be useful in scenarios,
such as (i) dysarthric patients uploading their speech for eval-
uation, (ii) children or language learners submitting their utter-
ances for evaluation, where preserving paralinguistic inform-
ation is important. An alternate way could be to use signal-
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processing approaches that directly alter the spectral proper-
ties of the original utterance for pseudonymisation based prior
knowledge. The Voice privacy challenge provided such an ap-
proach as secondary baseline, using McAdams method [3]. Its
performance is inferior to that of the primary one in terms
of automatic speech recognition (ASR) and automatic speaker
verification (ASV) performances. However, signal processing
based approaches have the advantage that the changes made and
their effects observed could be explained. Thus, further research
along this direction is required.

This paper starts with application of van Son’s method for
adjustable deterministic pseudonymisation of speech as presen-
ted by [4]. In their previous work, listening tests showed that
the listeners had difficultly in identifying the true speakers from
the pseudonymised versions. In the current paper, we further
build on it and verify the findings in terms of automatic meth-
ods (ASR and ASV) through the VoicePrivacy challenge.

The rest of the paper is organised as follows. Section[2]sum-
marises the methods used, Section [3] presents the experimental
setup and results, Section [4] analyses formant measurement in
pseudonymised speech and intelligibility measurement based
on dynamic time warping (DTW) and Section [5] concludes the

paper.

2. Methods

In this section, we first present the proposed pseudonymisation
method and present briefly the baseline methods of Voice Pri-
vacy challenge.

2.1. Proposed Pseudonymisation method

We utilise the pseudonymisation method proposed by van
Son [4]]. The speaker pseudonymisation method consists of the
following steps sequentially.

2.1.1. Simulate a different vocal tract for the speaker

To simulate a different vocal tract, mainly the formant fre-
quency locations and their amplitudes are modified to match
those of a desired speaker. To achieve this, first the playback
speed of the audio is altered so that the formant frequencies are
shifted by a linear factor. This was previously shown to simulate
a different vocal tract length (VTL) [S]. Then, the individual
formant frequencies are further shifted to the desired values as
follows: for each formant, (i) centre two band-pass Hann filters,
one at the current formant location and the other at the desired
location and (ii) extract and swap the spectral contents of the
two locations. This, precisely, creates a version of the source
signal with formants at the desired locations. This approach also
allows modifying the amplitude of the formant through the fil-
ter’s gain. Since the formant locations and their amplitudes vary
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across time for each utterance, the desired values are typically
set as offsets between the two speakers’ median parameter val-
ues. In other words, the median of the parameters VTL, formant
frequencies and their amplitudes are pre-computed per speaker
by aggregating across several (a few hundred seconds) of their
utterances. During pseudonymisation of a given speaker, the
short-time parameter values computed at each small-segment
level are added with the appropriate offsets (equal to the dif-
ference in the speakers’ median values) to simulate the desired
speaker’s vocal tract.

2.1.2. Change the speaking rate and fundamental frequency

Further, the speaking rate is estimated by an existing method
that automatically locates syllables from speech without using
transcription [6]. The method uses peaks in the signal energy,
that are preceded and succeeded by dips in energy, as cues for
syllables. The fundamental frequency and the speaking rate are
changed by using a pitch synchronous overlap and add method

7.

2.1.3. Additional processing to hide the speaker identity

The additional anonymising steps consist of (i) exchanging the
F4 and F5 bands by using the Hann filter method described
above and (ii) adding modulated pink noise at the speaker’s F6-
F9 bands to mask these formants.

Note that, except for the overlap-add synthesis step and
noise insertion, all the steps in this process are deterministic
and reversible.

In [4], the ability of human listeners to identify speakers
after pseudonymisation using this method was investigated in
a series of ABX listening experiments. Overall, the average
correct identification of pseudonymised speakers dropped from
over 90% in the original recordings to below 70% in pseud-
onymised speech (where 50% is random). This corresponds to a
relative increase of entropy by 91%, from 0.46 of 0.88. (Entropy
is computed in a two-class scenario, where 100% identifiability
corresponds to 0 bits of entropy and 50% identifiability corres-
ponds to 1 bit.) This indicates that, after pseudonymisation, the
uncertainty in identifying the speaker increases considerably.

2.2. Baseline

The challenge provided two baseline systems. The first uses
a neural source filtering (NSF) based approach that synthes-
ised speech in a target speaker’s characteristics. The system
generates the profiles (neural embeddings known as x-vectors)
of a pre-defined pool of target speakers which are not part of
the enrollment and trials. During the ASV evaluation, each
speaker is pseudonymised to the “farthest” speaker, among the
target speaker pool, in terms of the PLDA affinity score. In
the second baseline method, a signal processing method based
on McAdams coefficient is used. In this method, each utter-
ance is analysed using short-time processing, where the poles
fit on a given segment using linear prediction are scaled by
the McAdams coefficient, and the resultant signal is overlap-
added across segments to reconstruct its corresponding pseud-
onymised utterance.

3. Experimental setup and results

The Praat-based script we used for pseudonymisation is avail-
able publicly [8]. We followed the protocol set by the chal-
lenge, and evaluated ASR and ASV performances by pseud-

onymising the given subsets of VCTK and LibriSpeech data
sets. For pseudonymisation, target speaker profiles were cre-
ated using libri-other—-500 set of the LibriSpeech cor-
pus. In a given subset, each speaker is pseudonymised to have
the characteristics of a randomly chosen target speaker from the
libri-other-500 set. In ASV, this means that the enroll-
ment and trials of the same speaker are often mapped to differ-
ent target speakers (and we have not ensured that they are differ-
ent in all the cases). If only the trials sets are pseudonymised,
ASV may indicate a higher performance due to acoustic mis-
match introduced by the pseudonymisation method. A higher
equal error rate (EER) in ASV implies better pseudonymisation
of the speakers, and a lower word error rate (WER) on ASR
implies better preserving of intelligibility.

In the method we refer to as F03-9, we pseudonymised the
Fo, Fs, F4 and F5 by selecting a random speaker’s character-
istics from the target speaker pool 1ibri-other-500. We
also switched the F4 and F5 bands, and replace bands Fg_9 with
intensity modulated pink noise.

Tables [1] and 2] compare the ASV and ASR results, re-
spectively, of the baseline anonymisation methods using neural
source-filtering (NSF) and McAdams, and the proposed pseud-
onymisation method. In ASR, the proposed method gave a
lower WER than the McAdams baseline, indicating better in-
telligibility, in all the cases. In ASV, the EER in all the cases
except one (vctk-different female) is higher, implying a better
pseudonymisation, than the McAdams baseline. This is also in-
dicated by a consistently higher or equal C/:™ in all the cases.
Table 1: ASV results for both development and test partitions
(G-gender, E-experiment, o-original, p-pseudonymised(F03-9),
b1-NSF. b2-McAdams).

Dev. set Test set
EER% C;;;" Cu,. |EER% C;'" Cy,

o| 867 030 4286| 7.67 0.18 26.79
bl| 3679 0.89 16.35| 32.12 0.84 16.27
b2 | 2344 0.62 11.73| 1533 049 12.55
libri p| 2528 066 930 | 2482 0.59 1023

o| 124 003 1425| 1.11 0.04 15.30
bl| 34.16 0.87 24.72| 36.75 090 33.93
b2| 1056 036 1195| 824 026 1538
p| 1879 056 15.70| 1492 043 10.65

o| 233 009 086 | 28 009 0.87
bl| 2791 074 7.21 | 31.20 0.83 9.02
b2 | 11.63 037 43.55| 1445 047 42.73
vetk p| 16.86 051 11.12| 26.01 0.70 13.16

common 0 1.43 0.05 1.54 1.13 0.04 1.04
bl| 33.33 0.84 23.89| 31.07 0.84 21.68
b2| 10.54 032 25.00| 11.86 0.35 28.23
p| 2023 056 7.65| 13.84 045 532

o| 28 010 114 | 494 0.17 150
bl| 26.11 0.76 841 | 31.74 0.85 11.53
b2 | 1583 050 39.81| 1692 0.55 41.34
vetk p| 1567 050 625 | 2623 0.75 11.92

different ol 139 005 116 | 207 007 1.82
bl| 3092 0.84 23.80| 3094 0.83 23.84
b2 | 11.22 038 23.09| 12.23 0.40 25.06
p| 1474 039 3.84 | 2290 0.67 7.57

Data G E
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Figure 1: Example formant tracks for correlating formant values between pseudonymised speech and the original recordings. Top:
waveform of sentence [but it is a pleasure] from speaker p254, center: F1-Fs formant tracks for Baseline (red) and Original (black)
speech, bottom: id. for FO3-9 pseudonymisation (blue) and Original (black).

Table 2: ASR results in WER% for both development
and test partitions (o-original, bl-NSF, b2-McAdams, p-
pseudonymised(F03-9), s-LMs, I-LM;).
libri vetk
E | Dev. set Test set Dev. set Test set
S 1 S 1 S 1 S 1

0| 524 384|555 4.17]14.00 10.78 |16.38 12.80
bl| 8.76 6.39| 9.15 6.73]18.92 15.38|18.88 15.23
b2 |12.19 8.77|11.77 8.88|30.10 25.56|33.25 28.22

p| 882 648]| 8.04 5.87|21.99 18.23|23.32 18.89

4. Analysis
4.1. Measuring formants in pseudonymised speech

The aim of the pseudonymisation method proposed by [4] is
to protect the identity of the speaker while preserving selec-
ted linguistically and phonetically relevant aspects of speech.
The relative performance of the pseudonymisation method is
investigated by comparing the ability to compare formant val-
ues between pseudonymised and original recordings for the
baseline and F03-9 pseudonymisation procedures.

Formants are important in the study of speech because their
values are linked to the shape of the vocal tract, and hence to the
constellation and movements of the articulators [9} (1O, (11} [12].

Formant values are also related to the intelligibility of phonetic
contrasts [13} 14} [15]. These relations are also relevant to the
study of pathological speech, such as dysarthic speech [16] and
Parkinson’s disease [[17].

For the comparison, the first three formant tracks of pseud-
onymised speech samples were correlated to those of the ori-
ginal recordings, using the Robust formant tracking in Praat
[18]. The same recordings from 60 speakers (30F/30M from
vetk_dev and vctk_test) were used for Baseline and F03-9
pseudonymisation. A higher average correlation coefficient (R)
indicates that the pseudonimised speech would be more useful
to studying acoustic effects of differences in articulation.

The results of the comparison show that the average R of
the pseudonymised formant values were consistently higher for
the F03-9 pseudonymisations than for the Baseline method for
all three formants. R values were 0.1-0.3 higher on average
for all speakers (R?: 0.12-0.31 higher, highest values for Fs,
p<10~7, paired Student t-test per speaker). There was a differ-
ence based on speaker gender. For female speakers, the dif-
ference in R was 0.05-0.20 (highest values for Fs3, p< 1072,
idem), for male speakers, it was 0.14-0.42 (highest values for
F3, p<1075, idem). The differences in R between Baseline and
F03-9 were larger for male than for female speakers for all three
formants (two sample Student-t test, p<0.001, 0.01, and 107
for F; - F3, respectively).

The outcomes indicate that the F03-9 pseudonymisation
better preserves Fi_3 formant track movements than the
Baseline method, sometimes with a considerable margin. The



differences were more pronounced for male than for female
speakers. The biggest differences were found in the F3 tracks.

4.2. Intelligibility measure based on DTW distance

The challenge proposed WER of ASR as a measure of intelli-
gibility. Several components such as language model, pronunci-
ation lexicon, etc. can affect the performance of such a system.
Here we propose to utilise the reference speech to get an in-
telligibility score, by directly comparing its linguistic content
to that of the pseudonymised speech using a DTW based ap-
proach. First demonstrated in the context of using synthetic
speech for template-based ASR using posterior features [[19]]
and then extended to speech intelligibility assessment by Ull-
mann et al. [20]], the method consists of estimating phoneme
posterior probabilities, typically from an artificial neural net-
work (ANN), and then comparing such reference and test prob-
ability sequences using DTW based on Kullback Leibler (KL)
divergence as the local score [21}[19].

The local score can be written as

djt = KL(y; | 2¢), 6]
and the cumulative score as
Dji = djr +min (Dj—1), Dj—1)t-1), Dj—2)t-1)) » )

where the initial values Dgg = D(,1>0 = 0. The additional
skip transition from D;_2);—1) was allowed to accommodate
for the duration changes between the reference and test utter-
ances. The final score D ;7 normalised by the length yields
a measure of intelligibility; the lower the score, the better the
intelligibility.

We computed intelligibility scores in the following manner:

1. First, estimate the posterior probability of the clustered
context dependent phones using the ANN acoustic
model provided with VoicePrivacy challenge and mar-
ginalising the context-dependent information, position
markers and lexical stress markers to estimate the pos-
terior probabilities of context-independent phones. The
context-independent phone posteriors are used as the
posterior features, y; and z; for the DTW-based intel-
ligibility score estimation.

2. Compare the intelligibility scores (DTW distances) for
the proposed pseudonymisation method (F03-9) and the
baseline method (NSF) by averaging the scores of all the
utterances in each method and then comparing them.

Results from Table [3| indicate that the intelligibility scores for
the proposed pseudonymisation method are comparable to those
of the NSF baseline.

Table 3: Intelligibility in terms of DTW distances (bl1-NSF, p-
pseudonymised(F03-9)).

libri vetk
Dev. ‘ Test Dev. ‘ Test
b1 |0.006915 | 0.005584 | 0.007484 | 0.005751
p |0.007041 | 0.006047 | 0.007012 | 0.004604

5. Conclusions

We proposed to evaluate a deterministic and adjustable pseud-
onymisation method on the VoicePrivacy challenge and showed
that the method pseudonymises utterances better than a sig-
nal processing based comparable method, that uses McAdams
coefficient, provided by the baseline. A formant track analysis
showed a better correlation of the formant tracks with the pro-
posed method than with the baseline approach. DTW distance-
based intelligibility computed from the phone posteriors indic-
ate that the proposed method performs comparable to the NSF
baseline.
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