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1. System Description
Our system is based on Voice-Indistinguishablity, voiceprint
perturbation mechanism, and privacy-preserving speech synthe-
sis framework proposed in [1].

1.1. Voice-Indistinguishability

Voice-Indistinguishability is a rigorous privacy metrics for
voiceprint (i.e., speaker identity) privacy by extending differen-
tial privacy [2] for privacy-preserving speech data release. We
use the state-of-the-art representation of voiceprint, i.e., the x-
vector [3].

We follow the definition proposed for a speech database
but with an additional constraint for applying it to VoicePrivacy
challenge: In the x-vector database, each x-vector refers to one
speaker. That is, different x-vectors can be seen as different
speaker identities.

Definition 1 (Speech data release under Voice-Ind) For
every two neighboring x-vector databases D,D′, only differing
in the ith x-vector, which are x, and x′, a mechanism K sat-
isfies ε-voice-indistinguishability if for all possible perturbed
x-vector databases D̃

Pr(D̃|D)
Pr(D̃|D′)

≤ eεd(D,D
′)

d(D,D′) = dX (x, x
′)

dX =
arccos(cos similarity < x, x′ >)

π

(1)

where X is a set of possible voiceprints, dX is the angular dis-
tance metric, cos similarity is a measure of similarity between
two vectors of an inner product space that measures the cosine
of the angle between them.

Voice-Indistinguishability guarantees that given the output
x-vector database D̃, an attacker hardly distinguishes whether
the original x-vector database is D or D′ bounded by εdX . In
other words, a lower εdX indicates higher indistinguishability,
hence a higher level of privacy. The privacy budget value ε
globally influences the degree of guaranteed privacy.

1.2. Voiceprint Perturbation Mechanism

According to the definition and constraint that each x-vector
refers to one speaker, we provide a perturbation mechanism sat-
isfying Voice-Indistinguishability with the following two steps.

(1) X-vector database construction. Given a speech
database, for each speaker with numerous utterances, we use
one extracted x-vector (using the mean of x-vectors extracted
from these utterances) to represent this speaker’s identity per-
manently. Thus, we obtain an x-vector database,D, where each
x-vector refers to one speaker.

(2) Perturbation. Given an input x-vector x0 ∈ D, the
mechanism K perturbs x0 by randomly selecting an x-vector
x̃ in the dataset D according to caliborated probability distribu-
tions, thus providing plausible deniability for x0.

Theorem 1. A mechanism K that randomly transforms x0
to x̃ where x0, x̃ ∈ D according to the following equation, sat-
isfies voice-indistinguishability

Pr(x̃|x0) ∝ e−εdX (x0,x̃)

To satisfy the requirement “hide speaker identity as much as
possible” [4], we set Pr(x0|x0) = 0 to guarantee the minimum
anonymization level.

For example, if our x-vector database has three items: A,
B, C. The angular distance between A and B, between A and
C are 1 and 3, respectively. Assume that ε = 1, then we
have Pr(B|A) ∝ e−1; Pr(B|A) ∝ e−3, thus Pr(A|A) = 0,
Pr(B|A) = 0.88, and Pr(C|A) = 0.12.

1.3. Privacy-preserving Speech synthesis framework

After obtaining the perturbed x-vector database, we should syn-
thesize the perturbed x-vector and original speech character-
istics without the original x-vector. In the perturbed x-vector
database, each x-vector still refers to one speaker. Thus for
utterances of one speaker, we use the same x-vector given by
perturbed x-vector database so that we can naturally satisfy the
fourth requirement. We use a privacy-preserving speech synthe-
sis framework to synthesis the perturbed x-vector and original
speech characteristics other than x-vector.

Figure 1: Proposed System

The privacy-preserving speech synthesis framework is
shown in Figure 1. It uses two modules to generate the speech
data: (1) an End-to-End acoustic model that produces a Mel-
spectrogram (Mel-spec, used as a standard input feature by
speech synthesis) [5, 6] given the two input features: filter-bank
(Fbank, a commonly used feature for speech recognition) and
x-vector [7], and has been proved robustness since adopted to
neural network based speech recognition after 2011 [8]. Since
our voice-indistinguishablity is defined on x-vector, the post-
processing (e.g., speech synthesis) of the perturbed (protected)
x-vector does not affect the defined privacy as long as the orig-
inal x-vector is not used in the post-processing. Here we fol-
low the similar setting using Fbank (lmfb) as acoustic model



input [9]. It is an interesting future study to investigate whether
other types of features could improve the synthesized speech.
(2) a waveform vocoder based on Griffin-Lim algorithm [10]
that produces a speech waveform given the Mel-spectrogram
after converting Mel-spectrogram to linear scale spectrogram
using an inverse matrix. To protect voiceprint, after obtaining
the x-vectors, we perturb them according to the voiceprint per-
turbation mechanism stated in section 1.2.

1.4. Privacy Guarantee

Privacy guarantee of the released private speech database.
Figure 2 shows an example of the speech database before and
after transformation using the proposed mechanism. Voice-
indistinguishability guarantees that an attacker can hardly dis-
tinguish whether the original voiceprint is from A, B, or C.

Figure 2: Speech database before and after perturbation

Privacy guarantee of voice-indistinguishability. We
further explain the privacy guarantee provided by voice-
indistinguishability by comparing the prior and posterior dis-
tributions of information obtained by an adversary. We prove
that the prior and posterior distributions are bounded by εdX .
In other words, voice-indistinguishability does not impose that
an adversary gains no information but limits the increase of in-
formation that an adversary can obtain.

Let Pr(x) and Pr(x | x̃) be the prior and posterior distri-
butions of information obtained by an adversary, respectively,
then for two indistinguishable x-vectors x, x′:

lg
Pr(x̃|x)
Pr(x̃|x′) = lg

Pr(x | x̃)
Pr(x′ | x̃) − lg

Pr(x)

Pr(x′)
≤ εdX (x, x

′)

2. Results
The system is built using the End-to-End speech synthesis
toolkit [11] on default settings1 but trained using train-clean-
100. For each ”sensitive” database, we use the x-vector
database constructed using itself.

Table 2 shows the architecture of the x-vector extractor. It
consists of the context-aggregating time-delay neural network
(TDNN) [12] layers operating at frame level (with the final
context window of ±7 frames), a statistics pooling layer which
computes the mean and standard deviation of all the frames, ef-
fectively changing the variable-length sequence of frame-level
activations into a fixed-length vector, and an utterance-level part
consisting of two fully connected bottleneck layers which ex-
tract more sophisticated features and compress the information
into a lower-dimensional space, and an additional softmax out-
put layer.

Because ε represents our privacy budget, modified speech
data with a larger ε has a weaker capacity for mitigating speaker

1https://github.com/espnet/espnet/tree/master/egs/librispeech/tts1

verification attacks but better utility. After several experiments,
we choose ε = 20, which seems a good choice of balancing
between privacy and utility.

2.1. ASV results

Results for the ASV objective evaluation using this system are
provided in Table 1 for the development and evaluation datasets.

We can see that when the trial utterances are anonymized,
the results for speaker verifiability metrics are significantly
higher than the case when both the enrollment and trial utter-
ances are original. When both the enrollment and trial utter-
ances are anonymized, the results show evident speaker verifia-
bility, which meets the fourth requirement.

Compared with baseline-1, although the speaker verifiabil-
ity results when only the trial utterances are anonymized is a
little bit worse, our system has significantly better results for
meeting the fourth requirement. Compared with baseline-2, our
system has overall better performance.

2.2. ASR results

Results for ASR evaluation using this system are presented
in Table 3 in terms of WER. Compared with baseline-1 and
baseline-2, our results for WER for vctk dev and vctk dev have
similar even better performance. However, our results for WER
for libri dev and libri dev don’t perform very well. It seems
that since our x-vector database are contructed using the ”sen-
sitive” dataset itself, it contains less x-vectors in libri dev and
libri dev subset. An intuitive explanation is that the distances
between the original x-vector and numerous possible trans-
ferred x-vectors are so big that it influences the WER results.
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# Dev. set EER, % Cminllr Cllr Enroll Trial Gen Test set EER, % Cminllr Cllr
1 libri dev 8.665 0.305 42.931 o o f libri test 7.664 0.184 26.799
2 libri dev 43.470 0.944 148.637 o a f libri test 42.520 0.936 155.794
3 libri dev 3.693 0.138 5.103 a a f libri test 0.730 0.025 2.380
4 libri dev 1.242 0.035 14.275 o o m libri test 1.114 0.041 15.342
5 libri dev 42.080 0.913 148.332 o a m libri test 45.210 0.899 157.034
6 libri dev 2.174 0.086 1.684 a a m libri test 4.232 0.133 4.774
7 vctk dev com 2.616 0.089 0.874 o o f vctk test com 2.890 0.092 0.858
8 vctk dev com 47.380 0.966 159.616 o a f vctk test com 50.000 0.996 170.682
9 vctk dev com 3.779 0.140 4.534 a a f vctk test com 2.890 0.095 3.009

10 vctk dev com 1.425 0.051 1.565 o o m vctk test com 1.130 0.035 1.029
11 vctk dev com 49.290 0.991 160.925 o a m vctk test com 57.060 0.974 156.263
12 vctk dev com 4.843 0.185 5.409 a a m vctk test com 5.650 0.202 7.388
13 vctk dev dif 2.920 0.102 1.152 o o f vctk test dif 4.990 0.170 1.501
14 vctk dev dif 54.690 1.000 181.446 o a f vctk test dif 60.390 1.000 171.734
15 vctk dev dif 4.323 0.166 2.366 a a f vctk test dif 3.035 0.114 1.648
16 vctk dev dif 1.439 0.052 1.164 o o m vctk test dif 2.067 0.071 1.819
17 vctk dev dif 45.010 0.979 138.723 o a m vctk test dif 58.900 0.990 162.631
18 vctk dev dif 9.082 0.304 7.011 a a m vctk test dif 6.028 0.225 4.345

Table 1: ASV results for both development and test partitions (o-original, a-anonymized speech).

Layers Layer context #context #units
time-delay 1 [t− 2, t+ 2] 5 512
time-delay 2 {t− 2, t, t+ 2} 9 512
time-delay 3 {t− 3, t, t+ 3} 15 512
time-delay 4 {t} 15 512
time-delay 5 {t} 15 1500

statistics pooling [0, T ) T 3000
bottleneck 1 {0} T 512
bottleneck 2 {0} T 512

softmax {0} T L

Table 2: The x-vector TDNN. T is the number of frames in a
given utterance. L is the number of speakers.

# Dev. set WER, % Data Test set WER, %
LMs LMl LMs LMl

1 libri dev 5.25 3.82 o libri test 5.55 4.15
2 libri dev 16.52 14.72 a libri test 15.00 13.12
3 vctk dev 14.04 10.79 o vctk test 16.39 12.81
4 vctk dev 20.35 19.05 a vctk test 19.03 17.77

Table 3: ASR results for both development and test partitions
(o-original, a-anonymized speech).
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