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Abstract

This paper presents a study of the baseline system of the
VoicePrivacy 2020 challenge. This baseline relies on a voice
conversion system that aims at separating speaker identity and
linguistic contents for a given speech utterance. To generate an
anonymized speech waveform, the neural acoustic model and
neural waveform model use the related linguistic content to-
gether with a selected pseudo-speaker identity. The linguistic
content is estimated using bottleneck features extracted from
a triphone classifier while the speaker information is extracted
then modified to target a pseudo-speaker identity in the x-
vector’s space. In this work, we first proposed to replace the
triphone-based bottleneck features extractor that requires super-
vised training by an end-to-end Automatic Speech Recognition
(ASR) system. In this framework, we explored the use of adver-
sarial and semi-adversarial training to learn linguistic features
while masking speaker information. Last, we explored several
anonymization schemes to introspect which module benefits the
most from the generated pseudo-speaker identities.
Index Terms: VoicePrivacy 2020 Challenge, Speaker
anonymization, Speech recognition.

1. Introduction
In many applications, such as virtual assistants, speech signal
is sent from the device to centralized servers in which data is
collected, processed and stored. Recent regulations, e.g., the
General Data Protection Regulation (GDPR) [1] in the EU, em-
phasize on privacy preservation and protection of personal data.
As speech data can reflect both biological and behavioral char-
acteristics of the speaker, it is qualified as personal data [2]. The
VoicePrivacy challenge is one of the first attempt of the speech
community to encourage research on this topic define the task
and introduce metrics, datasets, and protocols.

Anonymization is performed to suppress the personally
identifiable paralinguistic information from a speech utterance
while maintaining the linguistic content. The task of the
VoicePrivacy challenge [3] is to degrade automatic speaker ver-
ification (ASV) performance, by removing speaker identity as
much as possible, while keeping the linguistic content intelligi-
ble. This task is also referred to as speaker anonymization[4] or
de-identification [5].

Anonymization systems in the VoicePrivacy challenge
should satisfy the following requirements:

• output a speech waveform;

• conceal the speaker identity;

• keep the linguistic content intelligible;

• modify the speech signal of a given speaker to always
sound like a unique target pseudo-speaker.

The fourth requirement constraints the system to have a one-to-
one mapping between the real speaker identities and a pseudo-
speaker. Such system can be considered as a voice conversion
system where the output speaker resides in a pseudonymized
space. Traditional voice conversion techniques consist of two
modules, a conversion function, and a vocoder [6]. The conver-
sion function learns a translation between acoustic features of
the source speaker and acoustic features of the target speaker.
Then, the vocoder uses the resulting acoustic features to syn-
thesize a speech waveform of the target speaker. Traditionally,
those systems heavily rely on parallel corpora to train the con-
version function [7]. The introduction of phoneme posterior-
grams (PPGs), obtained from a speaker-independent automatic
speech recognition system, allows to train the voice conversion
system without parallel data [8]. PPGs represent the articula-
tion of speech sounds corresponding to spoken content and are
supposed to be independent from the speaker identity. In the
VoicePrivacy baseline system, bottleneck features are extracted
from a triphone classifier. Triphone-based bottleneck features
share similar properties with PPGs which is why they are of-
ten used for voice conversion [8, 4, 9]. One drawback of those
features is that the reference used to train the extractor requires
linguistic knowledge on the language.

Intermediate representations of ASR-related neural net-
works convey information about the linguistic content in a non-
linearly compressed form. Several papers have discussed how
to make them to more speaker-invariant or speaker-independent
[10, 11]. While those techniques may improve the performance
on the task for which the network is trained, the assumption that
the extracted features contain less information about the speaker
identity has not been proven. Other works have study how to ex-
tract anonymized representations using adversarial neural net-
works [12]. Experiments on the speech modality were reported
in [13], where the authors conclude that for end-to-end ASR ar-
chitecture, adversarial training dramatically reduces the speaker
identification classification accuracy. However, this observation
does not match with the speaker verification results. Thus, it can
be assumed that adversarial training does not help the network
to better mask the speaker’s identity. To better remove personal
information from the bottleneck representation of written text,
a semi-adversarial approach that actively adapts the neural net-
work against unwanted inferences was proposed in [14].

Contributions of this paper are threefold. First, as an al-
ternative to the triphone classifier used in Voice Privacy’s base-
line, we propose to extract PPGs-like linguistic features from
a deep encoder-decoder architecture trained for ASR without
intermediate phonemic annotations. Such architecture only re-
quires speech data and their transcription to be trained. We ar-
gue that the bottleneck features extracted from an end-to-end
architecture share similar properties as phoneme based PPGs
while removing the needs for expert knowledge on a specific
language.



Figure 1: The baseline speaker anonymization system.

As the minimization of speaker information from PPGs-like
features was discussed by the authors of the VoicePrivacy base-
line architecture [4]. As the bottleneck features obtained via an
end-to-end ASR system still carry residual information about
the speaker’s identity, we evaluate, as a second contribution, the
ability of a semi-adversarial training to disentangle information
conveyed by the speech utterances.

For our third contribution, we investigate how anonymiza-
tion is performed in the toolchain by exploring several
anonymization schemes. We introspect the generalization capa-
bility of some modules of baseline to a target pseudo-speaker.

In Section 2, we describe the VoicePrivacy baseline archi-
tecture. Section 3 explains our proposed enhancement over
triphone classifier. Section 4 proposes an analysis on several
anonymization schemes. Finally, Section 5 summarizes the key
points and present possible extensions of this work.

2. The VoicePrivacy baseline system
The VoicePrivacy challenge provides two baseline systems: the
Baseline-1 that anonymizes speech utterances using x-vectors
and neural waveform models [4] and the Baseline-2 that per-
forms anonymization using McAdams coefficient [15]. Our
contributions are based on the Baseline-1 which is referred to
as the baseline system in the rest of this article.

The central idea of the baseline system, introduced in [4], is
to separate speaker identity and linguistic content from an input
speech utterance, assuming that those information can be disen-
tangled. This assumption leads to the idea that an anonymized
speech waveform can be obtained by altering only the feature
that encodes the speaker’s identity. The anonymization system
illustrated in Figure 1 breaks down the anonymization proce-
dure into three modules: the linguistic content extractors (A),
the speaker identity extractor (B), the anonymization module,
based on a pool of x-vectors, and the speech waveform synthe-
sizer (C). For a given speech utterance, the system first extracts
from the input waveform: an x-vector, the ASR bottleneck fea-
tures, and the fundamental frequency (F0). Then, using knowl-
edge gleaned from a pool of external speakers, a new x-vector
is extracted for a pseudo-speaker. Eventually, the speech wave-
form is synthesized using the x-vector from the pseudo-speaker
together with the original ASR bottleneck features, and the orig-
inal F0 by using an acoustic model [3] and a neural waveform
model [16].

ASR bottleneck features are used to encode the linguistic
content of an utterance. They are extracted from the final layer
of a factorized time delay neural network (TDNN-F) architec-
ture [17, 18] trained to classify triphones. Those bottleneck fea-
tures share similar properties with PPGs as they convey infor-
mation about the spoken linguistic content in a space considered
speaker-independent.

3. Proposed linguistic features
Traditional ASR systems are composed of an acoustic model
(AM), a hand-designed pronunciation lexicon, and a language
model (LM) [19]. These components are often manually de-
signed and independently trained on different datasets. Acous-
tic models take acoustic features and predict a set of sound
units, typically phonemes in context. Next, a pronunciation lex-
icon specifies how each word can be pronounced in terms of
phonemes. Finally, the LM assigns probabilities to word se-
quences. Over the last few years, acoustic-to-word or end-to-
end models directly targeting words or sub-word units[20, 21]
have grown in popularity. Those models attempt at jointly
learning the AM and the pronunciation lexicon. By nature,
end-to-end architectures don’t require linguistic expert knowl-
edge to build systems, making ASR more accessible for under-
resourced languages [22, 23]. As an alternative to the triphone-
based acoustic model used in the VoicePrivacy baseline, we pro-
pose to use an end-to-end model that output sub-words as output
units.

3.1. Model description

To obtain features without relying on a phonemes-classifier, we
train an end-to-end deep encoder-decoder for ASR. This neural
network is implemented using the ESPnet toolkit [24], and fol-
lows the hybrid architecture described in [25] with one encoder
and two decoders. The first decoder is based on connection-
ist temporal classification (CTC) while the second one uses an
attention mechanism. Input features are 80-dimensional mel-
scale filterbank coefficients augmented with pitch feature. The
encoder transforms a vector of 81 speech features into a vector
of 256-dimensional continuous values. Work in [10] has shown
that representations from deeper layers in networks are more ro-
bust to unwanted inferences, such as speaker identity. To keep
the speaker information as low as possible, we chose a deep
network rather than a shallow one. The encoder is composed of
3 bidirectional long short-term memory (BLSTM) layers with
a hidden state size of 1024 features, followed by a fully con-
nected layer. The encoder output is then fed to both CTC and
attention-based decoders to predict the sequence of sub-words.
The multi-objective learning function Lasr, described in [25], is
used to train the whole network without linguistic resources.

The bottleneck features used to represent the linguistic
content are extracted from the encoder’s output and used by
the speech synthesis acoustic model to synthesize pseudo-
anonymized mel-fbanks.

3.2. Semi-adversarial scheme

Works in [10, 13] have shown that adversarial training dramat-
ically reduces the speaker identification accuracy. However,
this observation does not transpose to the task of verification.
One assumption is that the loss used to train the system targets
identification performance but does not remove the speaker in-
formation. In this first attempt, the adversarial training does
not help the network to better mask the speaker’s identity. Re-
cently, a “semi-adversarial” training scheme introduced in [14]
has shown great success when applied on a written digit dataset.
The authors succeeded in reducing the performance of an un-
wanted inference, i.e., the classification of fonts, from a digit
classifier.

In our work, we defined the unwanted inference as speaker
classification from extracted linguistic features. The adversary
network is implemented following the x-vector architecture [26]



and takes as input the encoder’s output vector. The goal of the
adversary network is to minimize speaker classification error.
The objective function Lspk corresponds to the cross entropy.
With this framework, we applied semi-adversarial training to
train the encoder for ASR while also masking speaker-related
information. The adversarial objective function to minimize is
the following:

min
θe

[
min
θasr
Lasr (θe, θasr)− αmin

θspk

Lspk (θe, θspk)

]
where θe denotes the parameters of the encoder, θasr refers to
the parameters of the ASR decoders, θspk the parameters of the
speaker classifier, and α is a trade-off parameter between ASR
and speaker loss, empirically set to 3.0.

As described in [14], training is performed in 3 steps:

• optimize the ASR network and speaker classifier with a
α value of 0;

• optimize the encoder with the adversarial objective de-
scribed above;

• optimize both ASR decoders and speaker classifier while
freezing the encoder.

Step 2 and 3 can be repeated many times until Lspk does not
evolve anymore.

3.3. Data recipes and training

First, we use the datasplits train-clean-100 and train-other-500
[27] provided by the VoicePrivacy challenge to train the ASR
network without the speaker classifer. With a language model
used to rescore the ASR hypotheses, the network obtains a 7.4
WER% score on the LibriSpeech test clean partition. Then,
we apply the semi-adversarial scheme on the network. As the
speakers in the original LibriSpeech train/dev/test splits are dis-
joint. The original train-clean-100 subset is split into three sub-
subsets to train and evaluate speaker identification on a closed-
set of 251 speakers. The semi-adversarial scheme reduces the
speaker accuracy from 11.93% down to 2.9%, while only pe-
nalizing WER% by less than a 2.0 WER% absolute increase.
Note that retraining of both speech synthesis acoustic and neu-
ral waveform models is necessary to encounter for the new lin-
guistic features.

3.4. Results and discussion

The performance of the proposed bottleneck features were eval-
uated by two objective metrics: speaker verification metric,
and speech intelligibility. The metrics are computed using
the shared evaluation tools of the VoicePrivacy challenge [3].
The challenge protocol imposes participants to evaluate their
systems using shared ASR and ASV models trained on non-
anonymized speech.

Table 1 and 2 compare the ASV and ASR performance of
the proposed systems to the baseline system. The columns de-
noted as ASR-Bn correspond to the bottleneck features trained
for ASR only, and the columns denoted as ASR-Adv-Bn
correspond to the bottleneck features trained with the semi-
adversarial scheme. The two columns ASR-Bn and ASR-Adv-
Bn share similar results in both ASR and ASV metrics, this
shows that masking speaker’s information via semi-adversarial
training does not help the VoicePrivacy toolchain to better gen-
erate anonymized speech according to speaker verification per-
formance (given as EER). This similarity might be explained
by multiple factors: speaker identification is not the same task

as speaker verification, hence the semi-adversarial scheme isn’t
able to mask the information that speaker verification system
uses; the speech synthesis AM used in the toolchain gener-
ates anonymized mel-fbanks with multiple inputs, F0, linguistic
features, and x-vector. Leakage of speaker information can be
found in two inputs, namely the F0 and the linguistic features.
Masking speaker information from only one source might not
be sufficient. Indeed, analysis of the fundamental frequency
(F0), which is typically higher in female voices than in male
voices, can be used as a simple gender classifier [28]. The au-
thor of the VoicePrivacy baseline argued that the F0 shouldn’t be
modified in order to preserve context-related information such
as pitch, accents and intonation [29].

Bottleneck linguistic features obtained by an end-to-end
network, trained to directly target sub-words as output units, are
suitable to replace phoneme based PPGs. Table 2 shows that the
ASR system using the proposed linguistic features doesn’t per-
form as well as the baseline but WER% stays reasonably low,
and retraining the evaluation systems on anonymized training
data allows to reduce the ASR performance drop. We note that
the performance impact on both libri test and vctk test parti-
tions are similar, with an absolute increase of 25% and 23%
respectively.

A state-of-the-art x-vector speaker verification system is
used to assess system’s performance to hide the speakers iden-
tity. The threat model is as followed; an attacker gains ac-
cess to speech data generated by the anonymization toolchain;
he then attempts to verify speakers’ identities, using either
clean original enrollment speech and anonymized trial speech
or anonymized enrollment and trial speech. The Speaker veri-
fication scores presented in table 1 correspond to the results of
both original and anonymized enrollment scenarios. The base-
line system performs well in the original enrollment scenario
which is expected since the evaluation model was not trained on
anonymized speech. Our proposed linguistic features perform
equally well in this scenario. In the scenario where anonymized
enrollment and trial data are used (row 3, 6, 9, 12, 15, and 18)
our features show higher scores in terms of both EER and log-
likelihood-ratio cost function Cllr , providing then a better pri-
vacy. The proposed linguistic features seem to have the highest
impact on the male vctk test set (row 12) where a Cminllr absolute
improvement of 36% is observed. From informal listening tests,
it appears that the voices produced are more saturated than when
using the baseline system. The provided privacy gain observed
might come from this aspect, further analysis is on-going.

4. Analysis of the pseudo-speaker
In this section, we do not investigate the strategy used to gen-
erate the pseudo-speaker x-vectors, but we focus on the impact
that the x-vector information has on the modules used to gen-
erate the speech waveform: the speech synthesis AM and the
neural waveform model (cf. modules C, Fig. 1). In order
to understand which module benefits the most from the gen-
erated pseudo-speaker identities, we explore three additional
anonymization schemes, all of them based on the baseline sys-
tem. First, we replace the anonymized x-vector provided to
the neural waveform model, by the original x-vector. Then for
each combination of x-vector and model we generated the cor-
responding speech waveform. Results are reported in Table 3.
As scores were identical in each individual test sets, the WER%

and EER% values reported in this table are averaged values. In-
terestingly, our results show that the neural waveform model
does not benefit from the anonymization of the x-vector. Af-



Table 1: Speaker verification results for Baseline-1, ASR-Bn and ASR-Adv-Bn on test partitions (o – original, a – anonymized speech
data for enrollment and trial parts; Gen denotes speaker gender: f – female, m – male).

# Enroll Trial Gen Test set Baseline-1 ASR-Bn ASR-Adv-Bn
EER% Cminllr Cllr EER% Cminllr Cllr EER% Cminllr Cllr

1 o o f libri test 8 0.18 27
2 o a f libri test 49 1.00 151 51 1.00 156 52 1.00 155
3 a a f libri test 30 0.80 14 31 0.84 30 30 0.81 29

4 o o m libri test 1 0.04 15
5 o a m libri test 53 1.00 167 55 1.00 159 55 1.00 160
6 a a m libri test 33 0.83 27 32 0.84 42 32 0.82 38

7 o o f vctk test com 3 0.09 1
8 o a f vctk test com 50 0.99 158 51 1.00 177 52 1.00 172
9 a a f vctk test com 31 0.83 9 34 0.89 24 34 0.88 24

10 o o m vctk test com 1 0.04 1
11 o a m vctk test com 56 1.00 189 54 1.00 171 53 1.00 173
12 a a m vctk test com 22 0.66 14 36 0.90 35 37 0.88 33

13 o o f vctk test dif 5 0.17 1
14 o a f vctk test dif 49 1.00 142 53 1.00 157 53 1.00 152
15 a a f vctk test dif 34 0.88 12 29 0.81 30 30 0.82 31

16 o o m vctk test dif 2 0.07 2
17 o a m vctk test dif 54 1.00 166 56 1.00 166 56 1.00 169
18 a a m vctk test dif 26 0.74 16 32 0.86 46 31 0.86 39

Table 2: Speech recognition results for Baseline-1, ASR-Bn
and ASR-Adv-Bn in terms of WER% for test data (o – original,
a – anonymized speech data) for two trigram language models,
a large one LMl and a small one LMs

# Test set Data Baseline-1 ASR-Bn ASR-Adv-Bn
LMs LMl LMs LMl LMs LMl

1 libri test o 5.55 4.14
2 libri test a 9.06 6.77 11.22 8.52 11.08 8.42

3 vctk test o 16.39 12.81
4 vctk test a 19.24 15.53 22.85 19.11 22.88 19.19

Table 3: Influence of the selected x-vector on the generated
speech (orig – original x-vector, anon – anonymized x-vector).
ASR results in terms of WER% on vctk test with LMl, ASV results
are averaged over test partitions of the same attack scenario.

#

x-vector EER%
Enroll:

original speech
Trial:

anonymized speech

EER%
Enroll:

anonymized speech
Trial:

anonymized speech

WER%

Speech
synthesis
acoustic
model

Neural
waveform

model

1 anon anon 52 31 15.53
2 anon orig 52 32 15.32
3 orig anon 22 15 14.64
4 orig orig 22 15 14.63

ter an informal listening of the transformed data, it appears that
speech generated by methods 1 and 2 is perceived as being ut-
tered by the same speaker; and speech generated by methods 3
and 4 appears as being uttered by another speaker. It is worth
noting that copy synthesis (row 4) shows a high EER score of
22 in the original to anonymized attack, exhibiting a possible
limitation of the toolchain.

5. Conclusions and future work
In this work, we proposed to extract bottleneck features using
an end-to-end Automatic Speech Recognition (ASR) system to
replace the triphone-based bottleneck features extractor. Our
results show that such bottleneck representations can be used
by speaker anonymization systems. Features extracted from
an end-to-end architecture share similar properties as phoneme
based PPGs while removing the need of expert knowledge on
a specific language. Besides, it offers a small privacy im-
provement when compared to the baseline system, at the cost
of degraded intelligibility. We also showed that the semi-
adversarial training scheme does not help the system to pro-
duce better anonymized speech. We hypothesize that this defi-
ciency might be attributed to the disparity of sensitive informa-
tion that speech encapsulates. Lastly, the experimental analysis
of several anonymization schemes, to introspect which mod-
ule benefits the most from the generated pseudo-speaker iden-
tities, demonstrates that the neural waveform model does not
use the generated pseudo-speaker information. The toolchain
seems to only rely on the speech synthesis AM to perform
speaker anonymization. We hypothesize that this behavior
comes from the repetition of speaker information in x-vector
and mel-fbanks.
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