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Abstract 
This paper shows the post-evaluation analysis of our efforts in 
the VoicePrivacy 2020 Challenge. The VoicePrivacy 2020 
Challenge focuses on the task of speech anonymization which 
is related to speech synthesis, voice conversion, automatic 
speech recognition, and speaker verification. In this study, we 
focus on speaker verification. Based on speaker embedding x-
vectors, we study different front-end feature extraction, data 
augmentations, and neural network topologies. Score fusion is 
used to combine different system results. Our systems are 
compared with two official anonymization baselines and 
report objective evaluation results. We can greatly reduce the 
Equal Error Rate (EER) by using the proposed methods. 
Index Terms: speaker verification, privacy, anonymization, x-
vectors, speaker embedding 

1.  Introduction 
Speaker verification is one of biometric authentication 
methods such as iris scanning, facial recognition and 
fingerprinting sensing [1]–[3]. Because speech based human 
machine interaction has become popular in smart home, 
mobile devices and automobiles, speaker verification indicates 
its important role in machine learning and artificial intelligent. 
Speakers can be verified or identified by using a small amount 
of their voice [2]. Speaker verification can be classified into 
text-dependent and text-independent tasks according to the 
applications. The neural network based speaker embedding 
methods demonstrate good performance compared the 
traditional approaches. However, techniques of noise addition, 
speech transformation, voice conversion and speech synthesis 
make speaker verification hard. The word “anonymization” 
means suppressing personally identifiable attributes of the 
speech signal and leaving all other attributes intact such as 
noise addition [4], speech transformation [5], voice conversion 
[6]–[8], speech synthesis [9, 10], adversarial learning [11], and 
so on. The VoicePrivacy 2020 Challenge considers the 
following scenario, where the words “user” and “speaker” are 
used interchangeably [12, 13]. The speaker want to hide their 
identity while still allowing all other downstream goals to be 
achieved. But, the attacker want to identify the speaker. It is a 
trade-off situation between anonymization task and attack 
models. In this study, we focus on the analysis of speaker 
verification based on neural network based speaker 
embeddings. Recently, researchers are working on training 
neural network speaker embedding methods. Different 
methods of data augmentations, neural network topologies, 
and loss functions are proposed [14]–[22]. We show the 
impact of different front-end feature analysis, training data, 
data augmentation, and back-end scoring. The main objective 
of this study is to provide a description and analysis of our 
submission to the VoicePrivay 2020 challenge. 

This paper is organized as follows. Section 2 introduces 
our system setup including dataset, feature analysis and 
speaker embedding neural network topologies. Section 3 
describes the experimental results and analysis. Finally, 
Section 4 concludes this work. 

2.  System Setup 
We explore different data augmentations, feature extraction, 
and speaker embedding neural network topologies. 

2.1.  Training, development, and evaluation dataset 

In the VoicePrivacy 2020, a fixed training condition is 
required which means systems can only be trained using a 
designated training set including VoxCeleb1 [23], VoxCeleb2 
[24], LibriSpeech [25], and LibriTTS [26]. A 600 hours 
subsets of the LibriSpeech and LibriTTS are used including 
train-clean-100 and train-other-500. We only use the VoxCeleb 
dataset to train speaker embedding neural networks. The 
VoxCeleb dataset is collected by the University of Oxford, UK 
and extracted from videos uploaded to YouTube. The overall 
dataset involves two parts of VoxCeleb1 and Voxceleb2 which 
contains over 2,000 hours, over one million speech utterances 
for over 7,000 celebrities. The average number of utterances 
per speaker is about 170. All the audio samples are 16 kHz 
and 16-bit format wideband speech. 

The development set comprises LibriSpeech dev-clean and 
a subset of the CVTK corpus [27] called VCTK-dev. With the 
attach models in mind, data are divided into trial and 
enrollment set. The speakers in the enrollment set are the 
subset of those in the trial set for LibriSpeech dev-clean. 
However, the same speakers are used for enrollment and trial 
for VCTK-dev. In addition, there are two trial subsets denoted 
as common and different. The common trial subset is 
composed of utterances #1–24 in the VCTK corpus that are 
identical for all speakers which mean the subjective evaluation 
of speaker verifiability/linkability in a text-dependent manner. 
In other words, the different trial subset is a text-independent 
speaker verification. Similarly, the evaluation set comprises 
LibriSpeech test-clean and a subset of VCTK denoted as 
VCTK-test. 

2.2.  Front-end feature analysis 

Different types of front-end feature extraction are used to 
analyze speech from different signal aspects. Three speech 
feature sets are extracted from audio files, including the Mel-
frequency cepstral coefficients (MFC), perceptual linear 
predictive (PLP) analysis of speech, and Mel-frequency 
cepstral coefficients with pitch (MFP). The bandwidth is 
limited between 20 Hz and 7600 Hz. Features are extracted 
from a 25 millisecond (ms) frame length and a 10ms frame-
shift. 



 

2.3.  Data augmentations 

Because the neural network based speaker embedding is a data 
greedy approach, data augmentation is used to increase the 
amount and diversity of the available training [28]–[31]. Not 
only create new data but also create new speaker, in this study, 
we propose a vocal tract length perturbation (VTLP) to create 
new speakers and explore the effects of adding different data 
augmentation methods for the short-duration speaker 
verification.  

In speech signals, the female speaker’s speech tends to 
have shorter vocal tract lengths and higher formant 
frequencies than male speakers [32]. One would expect to see 
more compressed spectra in female speech than in male 
speech [33]. In Mel-frequency cepstral coefficients, the 
frequency bins are computed with the perceptually motivated 
Mel-frequency scaling after the log-amplitude of the 
magnitude spectrum. To change different vocal tract lengths 
and create new speakers, the VTLP based the speaker-specific 
Mel scales are estimated as follows: 

                                (1) 

where the warping factor α is used to adjust a speaker-specific 
Mel scale. This frequency-warping procedure is implemented 
as a filter bank modification.  results in a compressed 
spectrum,  results in a stretched spectrum, and 

 is for a non-warped spectrum. We use the spectral 
warping factor  with 9ms frame-shift (the default is 
10ms frame-shift) and the spectral warping factor  
with 11ms frame-shift to create two more copies of the 
original data (speakers) for training speaker embedding neural 
network, LDA/PLDA. 

Besides of VTLP creating new speakers and data, we 
apply the MUSAN dataset [34] to corrupt the original audio 
files with additive noises, including babble noise, general 
noise, and music noise. The simulated room impulse responses 
(RIRs) is used to corrupt the original audio by convolving 
with simulated RIRs. The simulated room impulse responses 
include small and medium room size from the ranges of width 
and length of a room are uniformly sampled from 1m-10m and 
10m-30m, respectively. In addition, we adopt the volume 
perturbation by using the sampled scaling factors. The scaling 
factor for each utterance is randomly chosen from a range (e.g. 
[0.5, 1.5]). Finally, the speed perturbation is used to create two 
more copies of the original signal with speed factors of 0.9 

and 1.1 which is related to modify the speed to 90% and 110% 
of the original rate. 

2.4.  Voice activity detection 

We used the non-parameter approach of energy-based voice 
activity detection (VAD) to estimate frame-by-frame speech 
activity. Without modeling, such as Gaussian mixture model 
(GMM) classifiers, the frames with silence or low signal-to-
noise ratio in the audio samples are removed.  

2.5.  TDNN-LSTM-Attention speaker embedding 

The neural network based speaker embedding technologies 
demonstrate sound performance and become the mainstream 
methods in speaker recognition. Variable-length utterances are 
converted to fixed-dimensional embedding vectors. TDNN-
LSTM-Attention neural network topology is proposed by 
considering long short-term memory (LSTM), time-delay 
neural network (TDNN), and self-attention pooling as shown 
in Fig. 1. The long short-term memory recurrent neural 
networks (RNN) is applied to better capture the temporal 
information in speech than using TDNN alone as in x-vector 
[35]–[38]. The bigger hidden neurons (1,024 instead of 512) 
are considered in training speaker neural networks. The 
temporal average pooling layer in x-vector is replaced with an 
attention pooling layer is applied to automatically determine 
weights of the speaker’s frame-level hidden vectors by an 
attention mechanism [39]–[42]. The self-attention pooling 
layer with 5 heads is used in this study. Mean and standard 
deviation from the variable-length inputs are estimated in the 
pooling layer. After the pooling layer, the speaker embedding 
representation is extracted from the first segment-level layers. 
To avoid swapping data in training neural networks, we create 
the training archives and shuffled training data. The number of 
maximum and minimum frames in each training example is 
400 and 200, respectively. The number of repeats for each 
speaker is 50. The number of frames per iteration is one 
billion. According to the configuration, 309 archives are 
generated in training neural networks. The TDNN-LSTM-
Attention is trained using the Stochastic Gradient Descent 
(SGD) optimizer. SGD with weight decay=1e-8 and 
momentum=0.5 is used for six epochs. 

2.6.  Backend LDA-PLDA scoring 

The PLDA based classifier is used in speaker embedding 
scoring. Before scoring, the vectors of speaker embedding are 
centered, projected to 200 dimensionalities using LDA and 
applied length normalization. The LDA and PLDA are trained 
using the VoxCeleb1 and VoxCeleb2 datasets. 

3.  Results and Analysis 
3.1.  Evaluation metrics 

The main metrics for the challenge are Equal Error Rate 
(EER) and the log-likelihood-ratio cost function (Cllr and 
Cllr_min). The EER means the point of the two detection error 
rates of false alarm and miss are equal. The log-likelihood-
ratio (LLR) cost function, Cllr, is computed as follows: 

           

       (2) 

 
Figure 1:  TDNN based x-vector which is modified by 

changing with long short-term memory, self-attention pooling, 
and bigger neurons in the frame level.
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where  and  are the number of target and 
nontarget LLR scores in the evaluation set, respectively. The 
Cllr_min is estimated by the optimal calibration using 
monotomic transformation scores to their empirical LLR 
scores. To obtain the monotonoic transformation, the pool 
adjacent violators (PAV) to LLR method is used [43, 44]. 

3.2.  Official baseline systems 

Two anonymization baselines are provided officially including 
codes and corresponding objective results. 

3.2.1.  The baseline-1 

The first baseline is anonymization using x-vectors and 
neural waveform models. There are three steps: In Step1, 256 
dimensional bottleneck features encoding spoken content are 
extracted using automatic speech recognition (ASR) acoustic 
model trained on LibriSpeech train-clean-100 and train-
other-500. A 512 dimensional x-vector encoding the speaker is 
extracted using a TDNN trained on VoxCeleb datasets. In 
Step2, for every source x-vector, an anonymized x-vector is 
estimated by finding the N=200 farthest x-vectors in an 

NTarget NNonTarget

Table 1:  Analysis of the results based on the Anonymization baseline-1 method of VoicePrivacy 2020 challenge. Official x-
vector result and our submitted result are listed. Our result is bold face. 

 

Table 2:  Analysis of the results based on the Anonymization baseline-2 method of VoicePrivacy 2020 challenge. Official x-
vector result and our submitted result are listed. Our result is bold face. 

            𝐶𝑙𝑙𝑟 ൌ ሺሺ 1
𝑁೅ೌೝ೒೐೟

ሻ ൅ ∑ log2ሺ1 ൅ 𝑒ି௅௅ோ೔ሻ௜∈்௔௥௚௘௧  

     ൅ሺ 1
𝑁ಿ೚೙೅ೌೝ೒೐೟

ሻ ൅ ∑ log2ሺ1 ൅ 𝑒ି௅௅ோೕሻ௝∈𝑁௢௡்௔௥௚௘௧ ሻ/2        (2) 

 
where 𝑁்௔௥௚௘௧  and 𝑁𝑁௢௡்௔௥௚௘௧  are the number of target and 
nontarget LLR scores in the evaluation set, respectively. The 
Cllr_min is estimated by the optimal calibration using 
monotomic transformation scores to their empirical LLR 
scores. To obtain the monotonoic transformation, the pool 
adjacent violators (PAV) to LLR method is used [43, 44]. 

3.2.  Official baseline systems 

Two anonymization baselines are provided officially including 
codes and corresponding objective results. 

3.2.1.  The baseline-1 

The first baseline is anonymization using x-vectors and 
neural waveform models. There are three steps: In Step1, 256 
dimensional bottleneck features encoding spoken content are 
extracted using automatic speech recognition (ASR) acoustic 
model trained on LibriSpeech train-clean-100 and train-other-
500. A 512 dimensional x-vector encoding the speaker is 

Table 1:  Analysis of the results based on the Anonymization baseline-1 method of VoicePrivacy 2020 challenge. Official x-
vector result and our submitted result are listed. Our result is bold face. 

Dataset Gender 
Anonymization method 1 Development Test 

Enroll Trial %EER Cllr_min Cllr %EER Cllr_min Cllr 

LibriSpeech 

female 
original 

original 8.67 (2.42) 0.30 (0.10) 42.86 (1.01) 7.66 (0.73) 0.18 (0.02) 42.86 (0.34) 

anonymized 
50.28 (39.20) 1.00 (0.95) 146.01 (20.90) 48.54 (39.42) 1.00 (0.94) 146.01 (18.25) 

anonymized 35.09 (33.38) 0.88 (0.85) 15.19 (36.06) 29.74 (29.38) 0.80 (0.80) 15.19 (48.84) 

male 
original 

original 1.24 (0.16) 0.03 (0.00) 14.25 (0.01) 1.11 (0.22) 0.04 (0.00) 14.25 (0.01) 

anonymized 
58.39 (49.07) 1.00 (0.99) 168.50 (37.07) 53.23 (49.22) 1.00 (1.00) 168.50 (31.74) 

anonymized 29.66 (30.59) 0.81 (0.80) 20.08 (40.50) 32.52 (32.96) 0.84 (0.85) 20.08 (48.82) 

VCTK 
(different) 

female 
original 

original 2.86 (0.22) 0.10 (0.01) 1.13 (0.08) 4.89 (0.41) 0.17 (0.01) 1.13 (0.38) 

anonymized 
50.03 (41.83) 0.99 (0.96) 162.91 (30.99) 48.87 (42.64) 1.00 (0.98) 162.91 (22.15) 

anonymized 29.48 (27.23) 0.81 (0.76) 10.24 (27.36) 34.21 (32.15) 0.88 (0.84) 10.24 (28.55) 

male 
original 

original 1.44 (0.05) 0.05 (0.00) 1.16 (0.01) 2.07 (0.17) 0.07 (0.01) 1.16 (0.04) 

anonymized 
55.33 (43.13) 1.00 (0.97) 166.50 (33.63) 53.73 (47.24) 1.00 (1.00) 166.50 (40.29) 

anonymized 26.10 (28.83) 0.76 (0.81) 18.81 (40.07) 25.83 (29.56) 0.74 (0.81) 18.81 (40.67) 

VCTK 
(common) 

female 
original 

original 2.62 (0.29) 0.09 (0.01) 0.87 (0.17) 2.89 (0.29) 0.09 (0.00) 0.87 (0.19) 

anonymized 
49.42 (38.37) 1.00 (0.94) 165.44 (27.19) 50.00 (40.17) 1.00 (0.95) 157.81 (21.68) 

anonymized 25.29 (20.35) 0.74 (0.63) 7.96 (32.54) 30.92 (24.28) 0.83 (0.71) 9.49 (34.39) 

male 
original 

original 1.43 (0.00) 0.05 (0.00) 1.56 (0.02) 1.13 (0.00) 0.04 (0.00) 1.04 (0.01) 

anonymized 
56.98 (49.57) 1.00 (0.99) 191.90 (43.47) 55.93 (45.76) 1.00 (0.99) 189.24 (40.68) 

anonymized 27.64 (26.21) 0.74 (0.73) 18.51 (46.89) 22.03 (23.45) 0.66 (0.68) 14.06 (44.48) 
 

 
Table 2:  Analysis of the results based on the Anonymization baseline-2 method of VoicePrivacy 2020 challenge. Official x-

vector result and our submitted result are listed. Our result is bold face. 

Dataset Gender 
Anonymization method 2 Development Test 

Enroll Trial %EER Cllr_min Cllr %EER Cllr_min Cllr 

LibriSpeech 

female 
original 

original 8.81 (2.42) 0.31 (0.10) 42.90 (1.01) 7.66 (0.73) 0.18 (0.02) 26.81 (0.34) 

anonymized 
35.37 (12.78) 0.82 (0.45) 116.89 (15.66) 26.09 (9.31) 0.69 (0.29) 115.57 (13.59) 

anonymized 23.44 (8.67) 0.62 (0.29) 11.73 (12.68) 15.33 (7.66) 0.49 (0.22) 12.55 (14.02) 

male 
original 

original 1.24 (0.16) 0.04 (0.00) 14.29 (0.01) 1.11 (0.22) 0.04 (0.00) 15.34 (0.01) 

anonymized 
17.86 (9.47) 0.53 (0.28) 105.72 (8.48) 17.82 (8.02) 0.50 (0.24) 106.43 (9.30) 

anonymized 10.56 (4.19) 0.36 (0.15) 11.95 (9.25) 8.24 (4.45) 0.26 (0.17) 15.38 (16.72) 

VCTK 
(different) 

female 
original 

original 2.92 (0.22) 0.10 (0.01) 1.14 (0.08) 4.94 (0.41) 0.17 (0.01) 1.49 (0.38) 

anonymized 
35.54 (13.92) 0.91 (0.45) 90.54 (12.97) 30.04 (14.61) 0.79 (0.47) 93.21 (5.69) 

anonymized 15.83 (3.26) 0.50 (0.12) 39.81 (20.66) 16.92 (5.61) 0.55 (0.22) 41.34 (16.59) 

male 
original 

original 1.44 (0.15) 0.05 (0.00) 1.16 (0.01) 2.067 (0.17) 0.07 (0.01) 1.82 (0.04) 

anonymized 
28.24 (3.67) 0.74 (0.13) 98.42 (9.76) 28.24 (5.17) 0.72 (0.19) 101.70 (11.49) 

anonymized 11.22 (2.88) 0.38 (0.10) 23.09 (15.07) 12.23 (2.81) 0.40 (0.09) 25.06 (12.95) 

VCTK 
(common) 

female 
original 

original 2.62 (0.29) 0.09 (0.01) 0.87 (0.17) 2.89 (0.29) 0.09 (0.00) 0.86 (0.19) 

anonymized 
34.30 (11.63) 0.88 (0.36) 85.90 (11.59) 30.64 (15.90) 0.81 (0.48) 93.97 (9.13) 

anonymized 11.63 (2.33) 0.37 (0.10) 43.56 (20.43) 14.45 (2.89) 0.47 (0.10) 42.73 (20.96) 

male 
original 

original 1.46 (0.00) 0.05 (0.00) 1.56 (0.02) 1.13 (0.00) 0.04 (0.00) 1.04 (0.01) 

anonymized 
23.93 (9.12) 0.67 (0.28) 90.76 (13.56) 24.29 (4.24) 0.71 (0.13) 99.34 (11.25) 

anonymized 10.54 (1.99) 0.32 (0.06) 24.99 (17.70) 11.86 (1.98) 0.35 (0.05) 28.23 (13.15) 

 

            𝐶𝑙𝑙𝑟 ൌ ሺሺ 1
𝑁೅ೌೝ೒೐೟

ሻ ൅ ∑ log2ሺ1 ൅ 𝑒ି௅௅ோ೔ሻ௜∈்௔௥௚௘௧  

     ൅ሺ 1
𝑁ಿ೚೙೅ೌೝ೒೐೟

ሻ ൅ ∑ log2ሺ1 ൅ 𝑒ି௅௅ோೕሻ௝∈𝑁௢௡்௔௥௚௘௧ ሻ/2        (2) 

 
where 𝑁்௔௥௚௘௧  and 𝑁𝑁௢௡்௔௥௚௘௧  are the number of target and 
nontarget LLR scores in the evaluation set, respectively. The 
Cllr_min is estimated by the optimal calibration using 
monotomic transformation scores to their empirical LLR 
scores. To obtain the monotonoic transformation, the pool 
adjacent violators (PAV) to LLR method is used [43, 44]. 

3.2.  Official baseline systems 

Two anonymization baselines are provided officially including 
codes and corresponding objective results. 

3.2.1.  The baseline-1 

The first baseline is anonymization using x-vectors and 
neural waveform models. There are three steps: In Step1, 256 
dimensional bottleneck features encoding spoken content are 
extracted using automatic speech recognition (ASR) acoustic 
model trained on LibriSpeech train-clean-100 and train-other-
500. A 512 dimensional x-vector encoding the speaker is 

Table 1:  Analysis of the results based on the Anonymization baseline-1 method of VoicePrivacy 2020 challenge. Official x-
vector result and our submitted result are listed. Our result is bold face. 

Dataset Gender 
Anonymization method 1 Development Test 

Enroll Trial %EER Cllr_min Cllr %EER Cllr_min Cllr 

LibriSpeech 

female 
original 

original 8.67 (2.42) 0.30 (0.10) 42.86 (1.01) 7.66 (0.73) 0.18 (0.02) 42.86 (0.34) 

anonymized 
50.28 (39.20) 1.00 (0.95) 146.01 (20.90) 48.54 (39.42) 1.00 (0.94) 146.01 (18.25) 

anonymized 35.09 (33.38) 0.88 (0.85) 15.19 (36.06) 29.74 (29.38) 0.80 (0.80) 15.19 (48.84) 

male 
original 

original 1.24 (0.16) 0.03 (0.00) 14.25 (0.01) 1.11 (0.22) 0.04 (0.00) 14.25 (0.01) 

anonymized 
58.39 (49.07) 1.00 (0.99) 168.50 (37.07) 53.23 (49.22) 1.00 (1.00) 168.50 (31.74) 

anonymized 29.66 (30.59) 0.81 (0.80) 20.08 (40.50) 32.52 (32.96) 0.84 (0.85) 20.08 (48.82) 

VCTK 
(different) 

female 
original 

original 2.86 (0.22) 0.10 (0.01) 1.13 (0.08) 4.89 (0.41) 0.17 (0.01) 1.13 (0.38) 

anonymized 
50.03 (41.83) 0.99 (0.96) 162.91 (30.99) 48.87 (42.64) 1.00 (0.98) 162.91 (22.15) 

anonymized 29.48 (27.23) 0.81 (0.76) 10.24 (27.36) 34.21 (32.15) 0.88 (0.84) 10.24 (28.55) 

male 
original 

original 1.44 (0.05) 0.05 (0.00) 1.16 (0.01) 2.07 (0.17) 0.07 (0.01) 1.16 (0.04) 

anonymized 
55.33 (43.13) 1.00 (0.97) 166.50 (33.63) 53.73 (47.24) 1.00 (1.00) 166.50 (40.29) 

anonymized 26.10 (28.83) 0.76 (0.81) 18.81 (40.07) 25.83 (29.56) 0.74 (0.81) 18.81 (40.67) 

VCTK 
(common) 

female 
original 

original 2.62 (0.29) 0.09 (0.01) 0.87 (0.17) 2.89 (0.29) 0.09 (0.00) 0.87 (0.19) 

anonymized 
49.42 (38.37) 1.00 (0.94) 165.44 (27.19) 50.00 (40.17) 1.00 (0.95) 157.81 (21.68) 

anonymized 25.29 (20.35) 0.74 (0.63) 7.96 (32.54) 30.92 (24.28) 0.83 (0.71) 9.49 (34.39) 

male 
original 

original 1.43 (0.00) 0.05 (0.00) 1.56 (0.02) 1.13 (0.00) 0.04 (0.00) 1.04 (0.01) 

anonymized 
56.98 (49.57) 1.00 (0.99) 191.90 (43.47) 55.93 (45.76) 1.00 (0.99) 189.24 (40.68) 

anonymized 27.64 (26.21) 0.74 (0.73) 18.51 (46.89) 22.03 (23.45) 0.66 (0.68) 14.06 (44.48) 
 

 
Table 2:  Analysis of the results based on the Anonymization baseline-2 method of VoicePrivacy 2020 challenge. Official x-

vector result and our submitted result are listed. Our result is bold face. 

Dataset Gender 
Anonymization method 2 Development Test 

Enroll Trial %EER Cllr_min Cllr %EER Cllr_min Cllr 

LibriSpeech 

female 
original 

original 8.81 (2.42) 0.31 (0.10) 42.90 (1.01) 7.66 (0.73) 0.18 (0.02) 26.81 (0.34) 

anonymized 
35.37 (12.78) 0.82 (0.45) 116.89 (15.66) 26.09 (9.31) 0.69 (0.29) 115.57 (13.59) 

anonymized 23.44 (8.67) 0.62 (0.29) 11.73 (12.68) 15.33 (7.66) 0.49 (0.22) 12.55 (14.02) 

male 
original 

original 1.24 (0.16) 0.04 (0.00) 14.29 (0.01) 1.11 (0.22) 0.04 (0.00) 15.34 (0.01) 

anonymized 
17.86 (9.47) 0.53 (0.28) 105.72 (8.48) 17.82 (8.02) 0.50 (0.24) 106.43 (9.30) 

anonymized 10.56 (4.19) 0.36 (0.15) 11.95 (9.25) 8.24 (4.45) 0.26 (0.17) 15.38 (16.72) 

VCTK 
(different) 

female 
original 

original 2.92 (0.22) 0.10 (0.01) 1.14 (0.08) 4.94 (0.41) 0.17 (0.01) 1.49 (0.38) 

anonymized 
35.54 (13.92) 0.91 (0.45) 90.54 (12.97) 30.04 (14.61) 0.79 (0.47) 93.21 (5.69) 

anonymized 15.83 (3.26) 0.50 (0.12) 39.81 (20.66) 16.92 (5.61) 0.55 (0.22) 41.34 (16.59) 

male 
original 

original 1.44 (0.15) 0.05 (0.00) 1.16 (0.01) 2.067 (0.17) 0.07 (0.01) 1.82 (0.04) 

anonymized 
28.24 (3.67) 0.74 (0.13) 98.42 (9.76) 28.24 (5.17) 0.72 (0.19) 101.70 (11.49) 

anonymized 11.22 (2.88) 0.38 (0.10) 23.09 (15.07) 12.23 (2.81) 0.40 (0.09) 25.06 (12.95) 

VCTK 
(common) 

female 
original 

original 2.62 (0.29) 0.09 (0.01) 0.87 (0.17) 2.89 (0.29) 0.09 (0.00) 0.86 (0.19) 

anonymized 
34.30 (11.63) 0.88 (0.36) 85.90 (11.59) 30.64 (15.90) 0.81 (0.48) 93.97 (9.13) 

anonymized 11.63 (2.33) 0.37 (0.10) 43.56 (20.43) 14.45 (2.89) 0.47 (0.10) 42.73 (20.96) 

male 
original 

original 1.46 (0.00) 0.05 (0.00) 1.56 (0.02) 1.13 (0.00) 0.04 (0.00) 1.04 (0.01) 

anonymized 
23.93 (9.12) 0.67 (0.28) 90.76 (13.56) 24.29 (4.24) 0.71 (0.13) 99.34 (11.25) 

anonymized 10.54 (1.99) 0.32 (0.06) 24.99 (17.70) 11.86 (1.98) 0.35 (0.05) 28.23 (13.15) 

 



external pool of LibriTTS train-other-500 based on the PLDA 
distance and averaging M=100 randomly selected vectors 
among them. In Step3, a speech synthesis acoustic model 
generates Mel-filterbank features given the F0, the 
anonymized x-vector, bottleneck features (BN), and a neural 
source filter (NSF) waveform model [45] produces a speech 
signal given the F0, the anonymized x-vector, and generated 
Mel-filterbank features. The speech synthesis acoustic model 
and NSF model are trained on LibriTTS train-clean-100. 

3.2.2.  The baseline-2 

The second baseline is anonymization using McAdams 
coefficients [46]. In contrast to the baseline-1, there is no 
requirement of any training data for the baseline-2. The 
McAdams coefficient is used to achieve anonymization by 
shifting the pole positions derive from linear predictive coding 
(LPC) analysis of speech signals. 

3.3.  VoicePrivacy 2020 submission results 

Our systems are compared with two official anonymization 
baselines and report objective evaluation results of the 
VoicePrivacy 2020 Challenge. The first baseline is 
anonymization using x-vectors and neural waveform models. 
The secondary baseline is anonymization using McAdams 
coefficients. Based on two official anonymization baselines, 
we focus on techniques of speaker verification. All results of 
baseline-1 and baselines-2 are shown in Table 1 and Table 2, 
respectively. Our result is bold face. Results of VCTK 
different and VCTK common denote tasks of text-independent 
and text-dependent speaker verification, respectively. Both 
anonymization methods of the trial data greatly increase the 
EER on all datasets. This shows that two anonymization 
baseline methods effectively increase the users’ privacy. In 
addition, the anonymized enrollment data result in a lower 
EER, which suggests that F0+BN features retain information 
related to the speaker. If the attacker can have such enrollment 
data, they might be able to re-identify users. Compared with 
the first anonymization baseline approach, the secondary 
baseline is a simpler, formant-shifting approach. Therefore, 
the proposed speaker verification methods can greatly 
decrease the EER in the secondary baseline than the first 
baseline system, while interpretation of Cllr is more 
challenging due to non-calibration. 

3.4.  Greedy joint fusion 

To select the best fusion combination, we use a greedy fusion 
scheme. First, we select the best one given the lowest EER. 
We fix that as the best system and evaluate all the two system 
fusions that include the best system. Thus, we select the best 
fusion of two systems. We fix two systems and then add a 
third system, and so on. To reduce the chances of overfitting, 
in each step, we prioritize fusions with only positive weights. 
Our results in Table 1 and Table 2 are fusion results by 
considering 4 systems including TDNN-LSTM speaker 
embedding using MFC feature, TDNN-LSTM-Attention 
speaker embedding using MFC, MFP, and PLP features. 
Experiments were implemented using the open-source Kaldi 
Speech Recognition Toolkit [47]. The experiments are tested 
on machines of NVIDIA DGX station equipped with Intel 
Xeon E5-2698 CPU 2.2 GHz, 256 GB RDIMM DDR4 and 
Tesla V100 GPUs. For training neural networks of speaker 
embeddings, it takes about 4-8 weeks depending on data 
augmentations and neural network topologies. 

4.  Conclusions 
In this study, we proposed TDNN-LSTM-Attention based 
speaker embedding for the INTERSPEECH 2020 
VoicePrivacy Challenge. Different types of front-end feature 
extraction are used to analyze speech from different signal 
aspects. Data augmentation is essential to boost the robustness 
of the speaker or acoustic model, and also to avoid overfitting 
during the training step. A vocal tract length perturbation 
(VTLP) is used to augment new data but also create new 
speakers for training speaker embedding neural networks, 
LDA, and PLDA. The proposed methods were trained on the 
VoxCeleb dataset including more than 2,000 hours of speech 
and 7,000 speakers, and evaluated on the LibriSpeech and 
VCTK datasets based on two official anonymization baselines. 
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