Speaker De-identification System using Autoencoders and Adversarial Training

Fernando M. Espinoza-Cuadros^{1,2}, Juan M. Perero-Codosero^{1,2}, Javier Antón-Martín^{1,2}, Luis A. Hernández-Gómez²

¹Sigma Technologies S.L.U., Madrid, Spain

²GAPS Signal Processing Applications Group, Universidad Politécnica de Madrid, Madrid, Spain

{fmespinoza,jmperero,janton}@sigma-ai.com, luisalfonso.hernandez@upm.es

Abstract

The fast increase of web services and mobile apps, which collect personal data from users, increases the risk that their privacy may be severely compromised. In particular, the increasing variety of spoken language interfaces and voice assistants empowered by the vertiginous breakthroughs in Deep Learning are prompting important concerns in the European Union to preserve speech data privacy. For instance, an attacker can record speech from users and impersonate them to get access to systems requiring voice identification. Hacking speaker profiles from users is also possible by means of existing technology to extract speaker, linguistic (e.g., dialect) and paralinguistic features (e.g., age) from the speech signal. In order to mitigate these weaknesses, in this paper, we propose a speaker deidentification system based on adversarial training and autoencoders in order to suppress speaker, gender, and accent information from speech. Experimental results show that combining adversarial learning and autoencoders increase the equal error rate of a speaker verification system while preserving the intelligibility of the anonymized spoken content.

Index Terms: Speaker de-identification, Adversarial Training, Autoencoders, Adversarial Neural Networks

1. Introduction

Recent European privacy legislation, i.e., General Data Protection Regulation (GDPR), has limited some uses of the data in order to protect the personal information. According to the recent regulations, stored biometric data need to be unlinkable, irreversible, and renewable [1]. This is the case of speech, which is considered personal information by itself. The main reason is that speech contains extra information apart from spoken contents. Furthermore, the emergent use of voice assistants has made that spoken commands are used by applications to carry out different actions. Sometimes it is necessary to collect some speech to improve and adapt the assistant's models to the user's speech. In this case, an attacker could have access to sensitive user's data (e.g., not only several utterances, but also some speaker profiles, such as age, gender. that can be easily obtained from these utterances). Thus, the objective is privacy preservation, suppressing critical speaker information from speech.

In order to preserve speaker privacy, some solutions have been proposed. Cryptography-based solutions involve a large complexity and computational overhead. Instead, anonymization is more flexible allowing also the removal of personally identifiable information within a speech signal. Since there is not a formal definition of anonymization (de-identification), VoicePrivacy initiative is defining metrics, protocols, and a benchmark on common datasets. Thus, privacy preservation solutions will be developed to anonymize the speech, but maintaining intelligibility and naturalness [2].

The speaker de-identification task aims to suppress the speaker identity, which might be represented in the linguistic content of the speaker's speech [3, 4] and spectral and excitation features of the speech signal [5, 6]. Previous studies in speaker de-identification area are very limited. Most of them are based on voice transformation (VT) systems [6, 7], and phoneme recognition followed by speech synthesis from the phoneme sequence [8]. In [7], authors proposed an improved VT-based approach to enable the speaker to be de-identified by voice transformation from a pool of pre-trained VT models. In [8], authors proposed the de-identification of the real speaker by averaging a set of x-vectors from a pool of pre-trained x-vectors and select the most dissimilarity x-vector. This final x-vector along with the sequence of diphones and fundamental frequency (F0) synthesize the anonymized speech.

Domain-Adversarial training (DAT) [9] has been applied to improve Automatic Speech Recognition (ASR) performance by learning features invariant to various conditions, such as acoustic variabilities [10, 11], accented speech [12], and inter-speaker feature variability [13, 14, 15]. Similarly, these techniques have been applied for speaker privacy protection. Speaker privacy protection in [16] uses adversarial training to generate representations that perform well in ASR while hiding speaker identity. Along the same lines, in [17] speaker-invariant training is carried out via reconstruction network in addition to the DNN acoustic model and trained jointly via adversarial training. Following the same approach, in this paper, we propose a speaker de-identification method based on the combination of adversarial training and autoencoders in order to generate speakerinvariant features as well as to other speaker characteristics (i.e., gender and accent). The rest of the paper is organized as follows. In Section 2, we describe the proposed speaker deidentification system based on x-vector anonymization. Section 3 explains the experimental setup under the VoicePrivacy 2020 Challenge [2]. Results are presented and discussed in Section 4. Finally, conclusions and future work are given in Section 5.

2. Speaker de-identification system

The speech signal contains different sources of variability. The speaker-dependent variability has been used to develop speaker characterization systems (e.g., age [18], gender [19], pathologies [20, 21], among others). In other cases, as in Automatic Speech Recognition (ASR), the speaker variability together with the acoustic environment variabilities (e.g., noise, channels, etc.) are considered undesired sources of variability. This has led to the proposal of different techniques to remove the ef-

fect of speaker [12, 13, 14, 15] and the noise conditions in [10], [11] to improve the ASR accuracy. Similarly, in [17], the use of a reconstruction network an a DNN acoustic model is jointly optimized through adversarial multi-task learning to generate speaker-invariant features.

Following a similar approach, we propose a speaker deidentification method using DAT [9] and Autoencoders. Our method does not start from scratch, but it is based on the Baseline-1 anonymization system proposed in VoicePrivacy 2020 Challenge [2], from now on referred as the baseline. It consists of three main parts: 1) feature extraction, 2) x-vector anonymization, and 3) speech synthesis. In this work we address part 2) of the baseline x-vector anonymization. In our approach, Adversarial Training and Autoencoders are proposed to remove information related to the speaker's characteristics in the anonymized x-vector while preserving an acceptable ASR performance.

2.1. Autoencoder-Adversarial Network

Based on speaker de-identification methods using adversarial networks presented in [14, 16, 17], we propose a speakercharacteristics-invariant approach based on an Autoencoder-Adversarial Network (AAN). In the proposed ANN architecture (see Fig. 1), an encoder-decoder autoencoder branch tries to reconstruct the input x-vector while in adversarial branches we try to mitigate speaker characteristics, such as gender, accent and speaker identity. From this approach, we aim to hide the speaker identity when reconstructing the x-vector by means of the autoencoder but making the latent or encoded representation invariant to the domain of speaker characteristics by using a Domain Adversarial Neural Network (DANN) [9]. For this adversarial architecture, we are now given a training dataset denoted as $\{x_i, y_i, z_{gi}, z_{ai}, z_{si}\}_N^{i=1}$, where x_i and y_i are the orig-inal and reconstructed x-vector, respectively, and z_{gi}, z_{ai}, z_{si} are the different domain classes as gender, accent, and speaker identity respectively of the i-th data point. We denote the θ_e and θ_d the parameters of the latent representation and decoder of the autoencoder respectively, and by θ_g , θ_a and θ_s the parameters of the gender, accent and speaker identity of the adversarial branches respectively. The objective function for the autoencoder L_{au} and adversarial branches L_z are defined as

$$L_{au}(\theta_e, \theta_d) = -\sum_{i=i}^N \log P(y_i | x_i; \theta_e, \theta_d)$$
(1)

$$\sum_{z} (\theta_e, \theta_g, \theta_a, \theta_s) = -\sum_{k \in \{g, a, s\}} \sum_{i} \log P(z_{si} | x_i; \theta_e, \theta_k)$$
(2)

Thus, our model is trained by optimizing the following min-max objective:

$$\min_{\theta_e,\theta_d} \max_{\theta_e,\theta_g,\theta_a,\theta_s} L_{au}(\theta_e,\theta_d) - \lambda L_z(\theta_e,\theta_g,\theta_a,\theta_s), \quad (3)$$

where λ is a trade-off parameter between the autoencoder objective and the adversarial objectives, which goal is to remove the speaker characteristics via backpropagation by means the Gradient Reversal Layer (GRL) [9] in each adversarial branch.

2.2. X-vector anonymization approaches

1

Based on the proposed framework, we evaluate two different approaches for x-vector anonymization. Both approaches use the x-vector extractor from the baseline system. In the first approach, the AAN described before, is used as x-vector anonymizer. That is, the x-vectors extracted from the baseline

Figure 1: Autoencoder-Adversarial Network (AAN) architecture.

Figure 2: X-vector anonymization approaches (i.e. AAN-1 and AAN-2) based on Autoencoder-Adversarial Networks. Adapted from [2].

are used as input to the autoencoder that generates as output the pseudo-speaker x-vector, as shown in Fig. 2 (AAN-1 label). In the second approach, we transform the pseudo-speaker x-vector generated by the baseline. As it can be seen in Fig. 2 (AAN-2 label), the anonymized x-vector is used as input to the autoencoder that generates as output a new anonymized x-vector.

2.3. ANN Network architecture and training

The enconder-decoder autoencoder model consists of 4 dense layers of size 512 with *tanh* activation functions, trained using Mean Square Error (MSE) loss function. Each adversarial branch consists of a dense layer of size 128 and ReLU activation followed by a *softmax* output layer, which output dimension corresponds to the number of classes on each adversarial feature. For the feature *accent* the output dimension is 30, i.e., the number of accents in training dataset, for *speaker* is 1251, i.e., speakers and for *gender* is 2, i.e., female and male. Crossentropy loss function was used on the adversarial training.

For AAN training and testing we used VoxCeleb-1 [22], which contains approximately 330 hours of recordings from 1251 speakers. It also contains gender and accent information for each speaker. For AAN training, a closed-set speaker identification task was performed for the speaker adversarial branch. We assign 10 utterances per speaker to validation and test. The remaining utterances were used for training. For the rest of the adversarial branches, gender and accent labels were used. To select the optimal trade-off-parameter λ , several values were tested running the anonymization task of the VoicePrivacy 2020 Challenge. The best results were achieved for $\lambda = 8$.

3. Experimental setup

3.1. Dataset

The proposed anonymization system, for both ANN-1 and ANN-2 approaches, was evaluated accordingly to VoicePrivacy 2020 Challenge using LibriSpeech [23] and VCTK [24] datasets for both ASR (intelligibility) and Automatic Speaker Verification (ASV) (anonymization) evaluation tasks. A detailed description of both datasets used in the challenge can be found in [2].

3.2. Evaluation system and metrics

The anonymization system performance was evaluated by means of the assessment of the speaker verifiability and the ability of the anonymization system to preserve the intelligibility of the anonymized spoken content, which is carried out by pretrained ASV_{eval} and ASR_{eval} models provided by the VoicePrivacy Challenge. The metrics for both ASV and ASR tasks evaluation are Equal Error Rate (EER) and Log-likelihood-ratio cost function (Cllr), and Word error rate (WER), respectively. A detailed description of these metrics can be found in [2].

4. Results and discussion

In this section, we present the results for ASV (Tables 5 and 6) and ASR (Tables 2 and 3) tasks of the Challenge for both ANN-1 and ANN-2 anonymization approaches. We also compare our results to those from the baseline (Tables 1 and 4).

Overall, when compared to the baseline system, our results show that both ANN proposals increase speaker deidentification while providing similar intelligibility of the anonymized spoken content. However, the increase in speaker de-identification is only observed for both-sides anonymization condition (a-enroll, a-trial). That is when comparing to the baseline (Table 4), ANN results for the original-enroll and anonymized-trial condition (a-enroll, o-trial) in Tables 5 and 6 show, in the worst case, a decrease in speaker de-identification performance, in terms of EER, of approximately 9% and 8% for AAN-1 and AAN-2 respectively. In contrast, in the both-sides anonymization condition (a-enroll, a-trial), both approaches achieve better speaker de-identification results. For the bestcase, we can observe an increase in performance over the baseline, in terms of EER, of approximately 9% and 10% for AAN-1 and AAN-2 respectively. Results in Table 5 and 6, also show that for both best and worst- case scenarios, similar results are obtained in both ANN approaches.

Differences in performance between the ANNs approaches and the baseline for different anonymization conditions can be related to the performance of the proposed x-vector anonymization methods. For the o-enroll, a-trial condition, in the xvector anonymization baseline, there is a high chance that the anonymized x-vector is very different from the original one

Table 1: ASR results for **Baseline** for development and test data (o-original, a-anonymized speech).

#	Dev. set	WE	R, %	Data	Tost sot	WER, %		
		LM_s	LM_l		iest set	LM_s	$\mathbf{L}\mathbf{M}_{l}$	
1	libri_dev	5.25	3.83	0	libri_test	5.55	4.15	
2	libri_dev	8.76	6.39	a	libri_test	9.15	6.73	
3	vctk_dev	14.00	10.79	0	vctk_test	16.39	12.82	
4	vctk_dev	18.92	15.38	a	vctk_test	18.88	15.23	

as it corresponds to an average of farthest x-vectors from the original. Whereas in the AAN-1 approach, as the autoencoder aims to reconstruct the original x-vector while suppressing the speakers' characteristics via adversarial training, there is a less probability that the reconstructed x-vector in the anonymized trials will be very far from the original. In the ANN-2 approach, we could expect that the anonymization performance should overcome the baseline due to the addition of variability to the anonymized x-vector. Nevertheless, that is not the case since the ANN training it is not optimized to reconstruct the anonymized x-vector. In contrast, in the both-sides anonymization condition (a-enroll, a-trial), we believe that the baseline system may have a high chance that the anonymized x-vectors in the enrollment and the trial fall in the same region since the anonymized xvectors are selected from the farthest x-vectors from the original utterances on both sides, which belong to the same speaker. Thus, there is a chance that the anonymized x-vectors on both sides might be closed to each other. Differently from that, in our approach, the use of adversarial training for AAN introduces and additional variability to the reconstructed x-vector that can lead to the observed increase in speaker de-identification.

Table 2: ASR results for AAN-1 for development and test data (a-anonymized speech).

#	Dev. set	WE	R, %	Data	Tost sot	WER, %		
#		LMs	LM_l		iest set	LM_s	LM_l	
1	libri_dev	9.22	6.75	а	libri_test	9.24	6.74	
2	vctk_dev	18.67	15.20	а	vctk_test	19.09	15.16	

Table 3: ASR results for AAN-2 for development and test data (*a*-anonymized speech).

#	Dev. set	WE	R, %	Data	Tost sot	WER, %		
		LM_s	LM_l		iest set	LM_s	LM_l	
1	libri_dev	9.28	6.76	а	libri_test	9.37	6.85	
2	vctk_dev	18.69	15.25	а	vctk_test	19.04	15.21	

Finally, as stated before, results for ANN-1 and ANN-2 in the ASR task (Tables 2 and 3) show a performance in intelligibility of the anonymized spoken content similar to that of the baseline system (Table 1).

5. Conclusions and future work

In this work, we present two methods for x-vector anonymization. These methods are integrated and evaluated under the Baseline-1 anonymization system proposed in VoicePrivacy 2020 Challenge. Both methods rely on an Autoencoder-Adversarial Network that tries to reconstruct x-vectors but intending to alleviate, through adversarial branches, the information of speaker characteristics in order to hide the speaker identity to a greater extent. Our experimental results show that though similar results to the baseline were achieved, when testing on both sides anonymization condition (i.e., training and testing with anonymized speech) our system outperforms the baseline. Those results foster to keep researching in adversarial training techniques, as well as the use of generative models to generate speaker-invariant features. Our future research will address the application of this framework to both the encoded speech content and the prosodic features looking for a better anonymization of the speech waveform suppressing the speaker information but preserving the spoken content.

#	Dev. set	EER, %	\mathbf{C}_{llr}^{min}	\mathbf{C}_{llr}	Enroll	Trial	Gen	Test set	EER, %	\mathbf{C}_{llr}^{min}	\mathbf{C}_{llr}
1	libri_dev	8.665	0.304	42.857	0	0	f	libri_test	7.664	0.183	26.793
2	libri_dev	50.140	0.996	144.112	0	а	f	libri_test	47.260	0.995	151.822
3	libri_dev	36.790	0.894	16.345	a	а	f	libri_test	32.120	0.839	16.270
4	libri_dev	1.242	0.034	14.250	0	0	m	libri_test	1.114	0.041	15.303
5	libri_dev	57.760	0.999	168.988	0	а	m	libri_test	52.120	0.999	166.658
6	libri_dev	34.160	0.867	24.715	a	а	m	libri_test	36.750	0.903	33.928
7	vctk_dev_com	2.616	0.088	0.868	0	0	f	vctk_test_com	2.890	0.091	0.866
8	vctk_dev_com	49.710	0.995	172.049	0	а	f	vctk_test_com	48.270	0.994	162.531
9	vctk_dev_com	27.910	0.741	7.205	a	а	f	vctk_test_com	31.210	0.830	9.015
10	vctk_dev_com	1.425	0.050	1.559	0	0	m	vctk_test_com	1.130	0.036	1.041
11	vctk_dev_com	54.990	0.999	192.924	0	а	m	vctk_test_com	53.390	1.000	190.136
12	vctk_dev_com	33.330	0.840	23.891	a	а	m	vctk_test_com	31.070	0.835	21.680
13	vctk_dev_dif	2.864	0.100	1.134	0	0	f	vctk_test_dif	4.887	0.169	1.495
14	vctk_dev_dif	49.970	0.989	166.027	0	а	f	vctk_test_dif	48.050	0.998	146.929
15	vctk_dev_dif	26.110	0.760	8.414	a	а	f	vctk_test_dif	31.740	0.847	11.527
16	vctk_dev_dif	1.439	0.052	1.158	0	0	m	vctk_test_dif	2.067	0.072	1.817
17	vctk_dev_dif	53.950	1.000	167.511	0	а	m	vctk_test_dif	53.850	1.000	167.824
18	vctk_dev_dif	30.920	0.839	23.797	a	а	m	vctk_test_dif	30.940	0.834	23.842

Table 4: ASV results for **Baseline** for development and test data (o-original, a-anonymized speech; **Gen** denotes speaker gender: *f*-female, *m*-male).

Table 5: ASV results for AAN-1 for development and test data (o-original, a-anonymized speech; Gen denotes speaker gender: f-female, m-male).

#	Dev. set	EER, %	\mathbf{C}_{llr}^{min}	\mathbf{C}_{llr}	Enroll	Trial	Gen	Test set	EER, %	\mathbf{C}_{llr}^{min}	\mathbf{C}_{llr}
1	libri_dev	44.320	0.974	171.463	0	a	f	libri_test	43.980	0.972	168.557
2	libri_dev	39.630	0.921	22.336	a	a	f	libri_test	34.850	0.886	27.144
3	libri_dev	49.840	0.989	153.223	0	a	m	libri_test	45.430	0.980	155.451
4	libri_dev	43.480	0.964	36.897	a	a	m	libri_test	46.100	0.979	47.663
5	vctk_dev_com	50.580	0.976	183.167	0	a	f	vctk_test_com	47.110	0.982	171.678
6	vctk_dev_com	29.650	0.802	14.289	a	a	f	vctk_test_com	37.570	0.913	17.304
7	vctk_dev_com	47.860	0.985	171.920	0	a	m	vctk_test_com	44.920	0.984	172.326
8	vctk_dev_com	38.180	0.921	30.378	a	a	m	vctk_test_com	37.290	0.927	30.642
9	vctk_dev_dif	49.860	0.957	177.802	0	a	f	vctk_test_dif	48.350	0.997	155.964
10	vctk_dev_dif	30.430	0.828	14.852	a	a	f	vctk_test_dif	34.000	0.881	21.306
11	vctk_dev_dif	44.760	0.988	151.207	0	a	m	vctk_test_dif	48.160	0.996	157.427
12	vctk_dev_dif	33.800	0.882	30.406	a	a	m	vctk_test_dif	39.040	0.947	33.550

Table 6: ASV results for AAN-2 for development and test data (o-original, a-anonymized speech; Gen denotes speaker gender: f-female, m-male).

#	Dev. set	EER, %	\mathbf{C}_{llr}^{min}	\mathbf{C}_{llr}	Enroll	Trial	Gen	Test set	EER, %	\mathbf{C}_{llr}^{min}	\mathbf{C}_{llr}
1	libri_dev	45.880	0.981	171.212	0	a	f	libri_test	44.890	0.980	166.823
2	libri_dev	39.630	0.924	23.006	a	a	f	libri_test	35.770	0.898	27.617
3	libri_dev	50.000	0.992	153.313	0	a	m	libri_test	45.880	0.985	155.770
4	libri_dev	43.940	0.968	38.383	a	a	m	libri_test	46.770	0.979	48.320
5	vctk_dev_com	50.870	0.981	183.799	0	a	f	vctk_test_com	46.820	0.983	172.018
6	vctk_dev_com	29.070	0.815	15.106	a	a	f	vctk_test_com	39.020	0.917	17.719
7	vctk_dev_com	47.580	0.986	172.169	0	a	m	vctk_test_com	45.480	0.987	172.479
8	vctk_dev_com	39.320	0.936	31.763	a	a	m	vctk_test_com	38.700	0.943	32.110
9	vctk_dev_dif	50.480	0.963	179.226	0	a	f	vctk_test_dif	49.280	0.996	156.662
10	vctk_dev_dif	31.050	0.833	15.638	a	a	f	vctk_test_dif	34.830	0.895	21.842
11	vctk_dev_dif	45.310	0.991	151.928	0	a	m	vctk_test_dif	48.390	0.996	157.517
12	vctk_dev_dif	34.690	0.897	31.013	a	a	m	vctk_test_dif	39.610	0.955	33.957

6. References

- [1] ISO/IEC JTC1 SC27 Security Techniques, "ISO/IEC 24745:2011. Information Technology-Security Techniques-Biometric Information Protection," International Organization for Standardization, Tech. Rep., 2011. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:24745:ed-1:v1:en
- [2] N. Tomashenko, B. Mohan, L. Srivastava, X. Wang, E. Vincent, A. Nautsch, J. Yamagishi, N. Evans, J. Patino, J.-F. Bonastre, P.-G. Noé, and M. Todisco, "The VoicePrivacy 2020 Challenge Evaluation Plan," pp. 1–17, 2020. [Online]. Available: https://www.voiceprivacychallenge.org/docs/VoicePrivacy_ 2020_Eval_Plan_v1_3.pdf
- [3] S. H. K. Parthasarathi, M. Magimai-Doss, H. Bourlard, and D. Gatica-Perez, "Evaluating the robustness of privacy-sensitive audio features for speech detection in personal audio log scenarios," in *ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings*, 2010, pp. 4474– 4477.
- [4] S. H. K. Parthasarathi, H. Bourlard, and D. Gatica-Perez, "Wordless sounds: Robust speaker diarization using privacy-preserving audio representations," *IEEE Transactions on Audio, Speech and Language Processing*, vol. 21, no. 1, pp. 83–96, 2013.
- [5] K. Hashimoto, J. Yamagishi, and I. Echizen, "Privacy-preserving sound to degrade automatic speaker verification performance," in *ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings*, vol. 2016-May. Institute of Electrical and Electronics Engineers Inc., may 2016, pp. 5500– 5504.
- [6] Q. Jin, A. R. Toth, T. Schultz, and A. W. Black, "Speaker deidentification via voice transformation," in *Proceedings of the* 2009 IEEE Workshop on Automatic Speech Recognition and Understanding, ASRU 2009, 2009, pp. 529–533.
- [7] M. Pobar and I. Ipšić, "Online speaker de-identification using voice transformation," in 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2014 - Proceedings. IEEE Computer Society, 2014, pp. 1264–1267.
- [8] F. Fang, X. Wang, J. Yamagishi, I. Echizen, M. Todisco, N. Evans, and J.-F. Bonastre, "Speaker Anonymization Using X-vector and Neural Waveform Models," in 10th ISCA Speech Synthesis Workshop. ISCA: ISCA, sep 2019, pp. 155–160. [Online]. Available: http://www.iscaspeech.org/archive/SSW_2019/abstracts/SSW10_P_2-4.html
- [9] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky, "Domain-Adversarial Training of Neural Networks," *Advances in Computer Vision and Pattern Recognition*, no. 9783319583464, pp. 189–209, may 2015. [Online]. Available: http://arxiv.org/abs/1505.07818
- [10] D. Serdyuk, K. Audhkhasi, P. Brakel, B. Ramabhadran, S. Thomas, and Y. Bengio, "Invariant Representations for Noisy Speech Recognition," *arXiv preprint arXiv:1612.01928*, nov 2016. [Online]. Available: http://arxiv.org/abs/1612.01928
- [11] Y. Shinohara, "Adversarial Multi-Task Learning of Deep Neural Networks for Robust Speech Recognition," in *Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH*, vol. 08-12-Sept. International Speech and Communication Association, sep 2016, pp. 2369–2372. [Online]. Available: http://www.iscaspeech.org/archive/Interspeech_2016/abstracts/0879.html
- [12] S. Sun, C.-F. Yeh, M.-Y. Hwang, M. Ostendorf, and L. Xie, "Domain Adversarial Training for Accented Speech Recognition," in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, apr 2018, pp. 4854–4858. [Online]. Available: https://ieeexplore.ieee.org/document/8462663/
- [13] Y. Adi, N. Zeghidour, R. Collobert, N. Usunier, V. Liptchinsky, and G. Synnaeve, "To Reverse the Gradient or Not: An Empirical Comparison of Adversarial and Multi-task Learning in

Speech Recognition," in *ICASSP*, *IEEE International Conference* on Acoustics, Speech and Signal Processing - Proceedings, vol. 2019-May. Institute of Electrical and Electronics Engineers Inc., may 2019, pp. 3742–3746.

- [14] Z. Meng, J. Li, Z. Chen, Y. Zhao, V. Mazalov, Y. Gang, and B. H. Juang, "Speaker-Invariant Training Via Adversarial Learning," in *ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing Proceedings*, vol. 2018-April. Institute of Electrical and Electronics Engineers Inc., sep 2018, pp. 5969–5973.
- [15] T. Tsuchiya, N. Tawara, T. Ogawa, and T. Kobayashi, "Speaker Invariant Feature Extraction for Zero-Resource Languages with Adversarial Learning," in *ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings*, vol. 2018-April. Institute of Electrical and Electronics Engineers Inc., sep 2018, pp. 2381–2385.
- [16] B. M. L. Srivastava, A. Bellet, M. Tommasi, and E. Vincent, "Privacy-Preserving Adversarial Representation Learning in ASR: Reality or Illusion?" *Proceedings of the Annual Conference* of the International Speech Communication Association, INTER-SPEECH, vol. 2019-Septe, pp. 3700–3704, nov 2019. [Online]. Available: http://dx.doi.org/10.21437/Interspeech.2019-2415
- [17] G. Saon, G. Kurata, T. Sercu, K. Audhkhasi, S. Thomas, D. Dimitriadis, X. Cui, B. Ramabhadran, M. Picheny, L.-L. Lim, B. Roomi, and P. Hall, "English Conversational Telephone Speech Recognition by Humans and Machines," in *Interspeech 2017*, vol. 2017-August. ISCA: ISCA, aug 2017, pp. 132–136. [Online]. Available: http://www.iscaspeech.org/archive/Interspeech_2017/abstracts/0405.html
- [18] P. Ghahremani, P. S. Nidadavolu, N. Chen, J. Villalba, D. Povey, S. Khudanpur, and N. Dehak, "End-to-end Deep Neural Network Age Estimation," in *Interspeech 2018*. ISCA: ISCA, sep 2018, pp. 277–281. [Online]. Available: http://www.iscaspeech.org/archive/Interspeech_2018/abstracts/2015.html
- [19] M. Kotti and C. Kotropoulos, "Gender classification in two Emotional Speech databases," in *Proceedings - International Conference on Pattern Recognition*, 2008.
- [20] C. Botelho, F. Teixeira, T. Rolland, A. Abad, and I. Trancoso, "Pathological speech detection using x-vector embeddings," arXiv preprint arXiv:2003.00864, 2020.
- [21] J. M. Perero-Codosero, F. Espinoza-Cuadros, J. Anton-Martin, M. A. Barbero-Alvarez, and L. A. Hernandez, "Modeling Obstructive Sleep Apnea voices using Deep Neural Network Embeddings and Domain-Adversarial Training," *IEEE Journal of Selected Topics in Signal Processing*, pp. 1–1, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8926341
- [22] A. Nagrani, J. S. Chung, and A. Zisserman, "Vox-Celeb: A Large-Scale Speaker Identification Dataset," in Interspeech 2017. ISCA: ISCA, aug 2017. 2616-2620. [Online]. Available: http://www.iscapp. speech.org/archive/Interspeech_2017/abstracts/0950.html
- [23] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, "Librispeech: An ASR corpus based on public domain audio books," in *ICASSP, IEEE International Conference on Acoustics, Speech* and Signal Processing - Proceedings, vol. 2015-August. Institute of Electrical and Electronics Engineers Inc., aug 2015, pp. 5206–5210.
- [24] V. Christophe, Y. Junichi, and M. Kirsten, "Cstr vctk corpus: English multi-speaker corpus for cstr voice cloning toolkit," *The Centre for Speech Technology Research (CSTR)*, 2016.