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Abstract
The increasing usage of speech in digital technology raises a
privacy issue because speech contains biometric information.
Several methods of dealing with this issue have been proposed,
including speaker anonymization or de-identification. Speaker
anonymization aims to suppress personally identifiable infor-
mation (PII) while keeping the other speech properties, in-
cluding linguistic information. In this study, we utilize time-
scale modification (TSM) speech signal processing for speaker
anonymization. Speech signal processing approaches are sig-
nificantly less complex than the state-of-the-art x-vector-based
speaker anonymization method because it does not require a
training process. We propose anonymization methods using two
major categories of TSM, synchronous overlap-add (SOLA)-
based algorithm and phase vocoder-based TSM (PV-TSM). For
evaluating our proposed methods, we utilize the standard objec-
tive evaluation introduced in the VoicePrivacy challenge. The
results show that our method based on the PV-TSM balances
privacy and utility metrics better than baseline systems, espe-
cially when evaluating with an automatic speaker verification
(ASV) system in anonymized enrollment and anonymized tri-
als (a-a). Further, our method outperformed the x-vector-based
speaker method, which has limitations in its complex training
process, low privacy in an a-a scenario, and low voice distinc-
tiveness.
Index Terms: speaker anonymization, voice privacy, pitch
shifting, phase vocoder, time-scale modification

1. Introduction
Speech is the most common form of human communica-
tion. Consequently, digital communication technology utilizes
speech to text as its input. However, distribution through pub-
lic channels such as social media can lead to privacy issues
because speech encapsulates linguistic-related and biometric-
related content [1]. For instance, the advanced voice conversion
system produces fake or cloned human voices of exceptional
quality [2, 3].

Further, automatic speaker verification (ASV) systems de-
veloped in speech biometric studies have speech features that
are related to personally identifiable information (PII) [4].
Without any protection, publicly available speech samples
could be used for theft or fraud [5, 6]. Therefore, solutions for
protecting the emerging threat are essentially important. One
solution is using speaker anonymization (i.e., de-identification)
to conceal PII in speech signals [7].

Several methods have been developed to de-identify PII
in speech, such as the voice transformation method for
anonymization purposes in [8, 9]. Subsequently, the Gaus-
sian mixture model (GMM) mapping and harmonic-stochastic

models were used to de-identify speech individuality in [10].
Further, the initiative to formally define speaker anonymization
was realized in 2020 through the VoicePrivacy challenge (VPC)
[11, 12]. In the VPC 2020, two baseline models were intro-
duced for speaker anonymization [11]. The first baseline sys-
tem is based on a neural source-filter (NSF) model and state-
of-the-art x-vector speaker embedding [7]. The x-vector of a
given speaker that represents speaker individuality information
is anonymized to the x-vector of a generated pseudo-speaker.
Meanwhile, the second baseline system uses the McAdams co-
efficient [13, 14]. Although the second baseline system does not
perform as well as the first, the implementation is considerably
simpler because it basically uses a signal processing technique
and does not require a training process.

Instead, we investigate the time-scale modification (TSM)
signal processing approach to speaker anonymization. We in-
vestigate pitch shifting using two major categories of TSM al-
gorithms for speaker anonymization (i.e., synchronous overlap-
add (SOLA) and phase vocoder-based TSM (PV-TSM)). Unlike
a vocoder, this approach synthesizes speech via frame reloca-
tion and adaptation [15]. However, while TSM can synthesize
higher-quality voices than a conventional vocoder, it cannot be
used to analyze pitch and timbre independently [16]. For in-
stance, the STRAIGHT vocoder [17] can be utilized to analyze
the fundamental frequency (F0), spectral envelope, and aperi-
odic signal. Prior studies related to speaker anonymization of-
ten used the SOLA-based TSM method for F0 modification,
e.g., [18, 19, 20]. F0 modification using SOLA-based TSM is
a relatively simple approach yet effective for manipulating the
speaker’s pitch. However, Patino et al. [14] reported that solely
using SOLA-based TSM is inadequate for voice privacy protec-
tion in the state-of-the-art ASV system. Besides, SOLA-based
TSM was reported less appropriate for signals with harmonic
content [15]. Human voice contains harmonic structures; thus,
applying PV-TSM that is more suited to a harmonic component
could benefit speaker anonymization. Subsequently, the phase
adaptation may manipulate not only F0 but also the PII-related
acoustics features. We follow the VPC protocols, which utilize
the ASV system that was trained using the x-vector for compar-
ing the performance of SOLA-based TSM and PV-TSM in the
evaluation.

2. Proposed Method
This study aims to exploit pitch-shifting methods based on TSM
for speaker anonymization. We utilize time-domain pitch syn-
chronous overlap-add (TD-PSOLA) [21] and phase vocoder-
based TSM (PV-TSM) approaches [22, 15]. Figure 1 shows the
block diagram of our proposed method using these two TSM
approaches. The remaining parts of this section overview the
TSM and detail our methods.



Figure 1: Block diagram of proposed methods.

2.1. Time-Scale Modification (TSM)

TSM algorithms are used in signal processing to compress or
stretch audio signals [15]. TSM is often applied for various
purposes, especially in music processing. For instance, it is
used when adjusting a video clip to the audio stream for faster
or slower playback. Apart from music processing, TSM algo-
rithms are also often used as speech synthesizers [16, 23]. How-
ever, to this date, TSM algorithms for speaker anonymization
have yet to be thoroughly investigated.

The general TSM procedures are comprised of three main
components: signal decomposition, frame relocation & adapta-
tion, and signal reconstruction [15]. The performance of TSM
algorithms depends upon the procedure in each component. In
this study, we manipulate PII using the major conventional TSM
procedure based on the synchronous overlap-add (SOLA) and
that based on the phase vocoder (PV-TSM).

PII such as speaker individuality is strongly associated with
pitch trajectory [24], so we utilize a TD-PSOLA algorithm [21]
to represent SOLA-based TSM for anonymization. Meanwhile,
we also utilize the PV-TSM algorithm [25] to modify pitch tra-
jectory. The PV-TSM improves the phases of the synthesized
speech by phase propagation [15].

2.2. Speaker anonymization by F0 modification

Several studies have been conducted on speaker anonymiza-
tion by modifying F0 [26, 27, 28, 20]. However, most stud-
ies utilized the B1a framework for speech synthesis, suggest-
ing that F0 modification could improve the privacy (in EER)
but introducing more WER (reducing the utility). Recently, an-
other study on F0 manipulation without using the B1a frame-
work is conducted by Tavi et al. [20]. Their study utilized func-
tional data analysis (FDA) on F0 trajectories to improve speaker
anonymization. Although the output anonymization was not
comparable to that of the x-vector-based synthesizer, they de-
termined that pitch manipulation by FDA improves privacy (in
EER).

2.2.1. Anonymization using TD-PSOLA

The TD-PSOLA algorithm is typically used to manipulate the
pitch of a given speaker. Although this method is reportedly
insufficient for protecting privacy against x-vector-based ASV
systems [20], this algorithm’s ability to preserve privacy based
on VPC recipes has yet to be thoroughly investigated. We

anonymize the given speech signals using the pitch shifting by
the TD-PSOLA algorithm.

The main procedures of pitch shifting by the TD-PSOLA
algorithm are as follows:

• First, the original signal is resampled to increase or de-
crease the pitch.

• Second, we input speech signal x with an analysis frame
xm. By this iterative process, we obtained the output
signal y.

• Next, a Hann window function w is applied to the anal-
ysis frame xm to obtain the synthesis frame ym.

• Lastly, OLA is conducted to adjust the output signal y
duration modified by resampling to the original signal x
duration.

2.2.2. Anonymization using PV-TSM

The short-time Fourier transform (STFT) is a fundamental tech-
nique for frequency analysis. However, the resulting frequency
may be inaccurate depending on the discretization parameters
[15]. Therefore, a phase vocoder (different from a general
vocoder) is used to improve the frequency estimation by us-
ing the derivation of the sinusoidal components’ instantaneous
frequency (i.e., phase propagation process).

Similar to the speaker anonymization using TD-PSOLA,
we can manipulate the PII in a given speech signal with pitch
shifting. The pitch shifting is conducted as follows:

• First, the original signal is resampled to increase or de-
crease the pitch.

• Next, STFT is performed to obtain the frequency spectra
of the input signal X .

• Then, the phase jumps in each overlapping frame is fixed
via phase propagation.

• Finally, the signal is reconstructed from the frequency
spectra after phases update XMod.

3. Experiments
Our experiments follow the protocols and datasets provided in
the VPC 20201 [11] and VPC 20222 [29].

1https://github.com/Voice-Privacy-Challenge/
Voice-Privacy-Challenge-2020

2https://github.com/Voice-Privacy-Challenge/
Voice-Privacy-Challenge-2022



Table 1: ASVeval of VPC 2020 results for o-a scenario.

EER (%)Dataset Gender Weight Orig B1a B1b B2b TD-PSOLA (2,3) PV-TSM (3,5) PV-TSM (2,3)
female 0.25 8.81 50 52.98 37.93 8.38 42.19 34.67Libri male 0.25 1.24 52.78 55.43 38.35 0.93 44.1 22.72
female 0.20 2.92 49.18 52.78 35.77 4.55 41.89 32.56VCTK (diff) male 0.20 1.44 53.85 54.44 42.33 1.79 49.08 26
female 0.05 2.62 50 45.93 36.34 3.49 46.22 41.33

Dev

VCTK (comm) male 0.05 1.43 55.37 55.27 45.01 1.71 42.45 32.2
Weighted average dev 3.59 51.57 53.61 38.76 3.86 44.20 29.74

female 0.25 7.66 50 50.91 31.39 7.3 37.77 34.67Libri male 0.25 1.11 52.78 51.89 27.39 1.34 38.53 22.72
female 0.20 4.94 49.18 49.59 36.32 4.58 40.74 32.56VCTK (diff) male 0.20 2.07 53.85 54.99 38.12 2.41 45.35 26
female 0.05 2.89 50 50.58 44.51 3.76 51.16 41.33

Test

VCTK (comm) male 0.05 1.13 55.37 53.95 40.68 1.41 44.07 32.2
Weighted average test 3.80 51.57 51.84 33.84 3.82 41.05 29.74

Table 2: ASVeval of VPC 2020 results for a-a scenario.

EER (%)Dataset Gender Weight Orig B1a B1b B2b TD-PSOLA (2,3) PV-TSM (3,5) PV-TSM (2,3)
female 0.25 8.81 35.51 32.10 40.62 11.51 50.99 47.44Libri male 0.25 1.24 32.45 32.76 43.63 1.40 39.44 38.20
female 0.20 2.92 27.79 21.56 35.93 3.59 53.06 51.94VCTK (diff) male 0.20 1.44 29.63 24.62 43.37 1.69 31.02 30.27
female 0.05 2.62 27.62 16.28 54.36 2.62 51.16 49.42

Dev

VCTK (comm) male 0.05 1.43 30.20 25.07 46.44 1.71 43.30 42.45
Weighted average dev 3.59 31.37 27.52 41.96 4.50 44.15 42.45

female 0.25 7.66 33.39 27.74 42.70 7.48 45.80 44.16Libri male 0.25 1.11 33.63 35.86 47.66 1.11 41.43 39.64
female 0.20 4.94 33.80 23.15 31.02 4.99 47.48 46.97VCTK (diff) male 0.20 2.07 28.07 25.20 38.92 2.58 56.20 56.49
female 0.05 2.89 32.08 21.97 38.15 3.47 34.97 34.10

Test

VCTK (comm) male 0.05 1.13 26.84 25.71 46.61 1.13 49.44 51.98
Weighted average test 3.80 32.08 27.95 40.82 3.89 46.76 45.95

3.1. Datasets

We evaluated our methods using the datasets described in the
VPC [11, 29]. The evaluation datasets were comprised of Lib-
riSpeech (Libri) [30] and the voice cloning toolkit (VCTK) [31].
Each dataset was divided into two subsets, i.e., development
and test. Further, the VCTK dataset is also split into “common”
(comm) and “different” (diff) parts to evaluate the speaker ver-
ifiability regarding the linguistic contents (common or different
utterances).

3.2. Experimental Setup

For the implementation of our proposed methods, we utilized
the TSM algorithms based on the TSM toolbox [25]. We used
the default analysis frame size, setting the analysis hop size to
80. The pitch-shifting parameter ∆ was uniformly randomized,
as follows:

∆ ∼ U{(−∆max,−∆min), (∆min,∆max)}. (1)

where (∆min,∆max) are (2, 3) or (3, 5) on the semitone scale
(one semitone is equivalent to 100 cents (¢)). A semitone (half
step) is a commonly used musical interval, representing differ-
ent pitches between neighboring notes on the piano. Accord-
ingly, one octave consists of 12 semitones (C, C#, D, D#, E,
F, F#, G, G#, A, A#, and B). Pitch shifting by n semitones is
expressed as follows:

F0y (t) = 2n/12 × F0x(t) (2)

where F0x(t) is the fundamental frequency trajectory of the
original signal x in Hz, and F0y (t) is the fundamental frequency
trajectory after shifting.

We evaluated our methods using the ASVeval and ASReval
from the VPC 2020 [11]. Additionally, we considered the VPC
2022 objective evaluation metrics [29] of the best algorithm in
this study based on the VPC 2020 evaluation results. We in-
clude the evaluation of the privacy performance of the semi-
informed attack model (ASVeval in the VPC 2022), pitch cor-
relation (ρF0 ), and the gain of voice distinctiveness (GV D) [32].
Furthermore, we compare the results using the baseline systems
(B1a, B1b, and B2b (a randomized version of secondary base-
line)) in the VPC 2022.

3.3. Results

Carrying out the whole evaluation based on the VPC 2022
recipes requires more resources than the VPC 2020 recipes
(huge time and space complexity). Thus, first, we evaluated
our method’s performance using the VPC 2020 recipes without
considering the semi-informed attack model. After verifying
the best one, we conducted the VPC 2022 using the best algo-
rithm.

We utilized the ASVeval 2020 in three scenarios: (1) orig-
inal enrollment–original trials (o-o), (2) original enrollment–
anonymized trials (o-a), and (3) anonymized enrollment–
anonymized trials (a-a). The Orig. column in both Tables 1
and 2 shows the results of the ASVeval in the o-o scenario. The
other columns in Table 1 show the results of the ASVeval in the
o-a scenario with corresponding methods. In the same manner,
Table 2 shows the ASVeval results in the a-a scenario. Table 3
shows the utility evaluation results using the ASReval. Figure 2
compares the privacy metrics versus the utility metrics.

We also conducted an objective evaluation based on the



Table 3: ASReval of VPC 2020 results.

WER (%)Dataset Orig B1a B1b B2b TD-PSOLA (2,3) PV-TSM (3,5) PV-TSM (2,3)
Libri 3.83 6.96 5.91 36.42 4.27 9.26 5.41Dev VCTK 10.79 15.96 15.48 52.09 12.14 22.94 15.16

Average-dev 7.31 11.46 10.70 44.26 8.21 16.10 10.29
Libri 4.14 7.78 6.08 48.12 4.49 8.18 5.61Test VCTK 12.81 15.74 15.60 62.35 14.24 23.64 16.98

Average-test 8.48 11.76 10.84 55.24 9.37 15.91 11.30

(a) original enrollment – anonymized trials (o-a) (b) anonymized enrollment – anonymized trials (a-a)

Figure 2: Privacy vs utility plot based on objective evaluation in VPC 2020 (using test set).

metrics in the VPC 2022 [29]. Table 4 shows the ASVeval re-
sults of the semi-informed attack model for the test set. Mean-
while, Tables 6 and 7 shows the utility metrics in terms of pitch
correlation and the gain of voice distinctiveness, respectively.

4. Discussion
By comparing the results of all the methods in Table 1, we can
conclude that the primary baseline systems (B1a and B1b) have
the best privacy in the o-a scenario. If we compare the methods
based on signal processing (which does not require a complex
training process), the PV-TSM algorithm with wider and higher
shift parameters gave better protection than the one from B2b.
Interestingly, although TD-PSOLA is also one of the TSM al-
gorithms, it provides totally different results from the one from
the PV-TSM. These results aligned with the indications of prior
work that the TD-PSOLA algorithm is insufficient (in either
scenario) for protecting voice privacy against x-vector-based
ASV systems [20]. For results submission, we refer the PV-
TSM (3, 5) as the primary method and PV-TSM (2, 3) as the
contrastive method.

The VPC 2020 results indicate that all existing methods that
achieved high privacy in the o-a scenario attained much lower
privacy in the a-a scenario. For instance, the EER of the B1a
was reduced from approximately 50% (o-a scenario) to 30%
(a-a scenario). This result indicates that privacy is not well-
preserved when an attacker has access to several anonymized
utterances (anonymization algorithm as a black box) [26]. How-
ever, the B2b and our methods that are based on the PV-TSM
could provide higher privacy protection in the a-a scenario than
in the o-a scenario. Table 2 shows that our PV-TSM (3, 5)
method achieved the best speaker verifiability.

Subsequently, the utility metric in the VPC 2020 was evalu-
ated by an ASReval system. Table 3 shows that the speech intel-
ligibility significantly degraded (WER significantly increased)
even though the B2b could provide better privacy than the B2a
(original secondary baseline, results in [11]). Despite the simple
anonymization method, our methods based on the PV-TSM can
provide a more reliable balance between the trade-off in pri-
vacy and utility metrics than the anonymization method using
the McAdams coefficient (B2a and B2b).

Figure 2 shows the average results overall (with the B2a
as an additional reference). These results indicate that the B1a
and the B1b perform almost similarly and can be considered the
best in the o-a scenario (see left figure). Our methods based on
the PV-TSM algorithm could achieve the next highest balance
between privacy and utility. The privacy could be improved
by increasing the pitch-shifting parameter with a wider range.
However, this process slightly degraded speech intelligibility
(WER increased from 11.30% to 15.91%). Even so, the PV-
TSM-based methods could significantly surpass the methods
using the McAdams coefficient (B2a, B2b) that significantly
degraded speech intelligibility (WER increased from 18.53%
to 55.24%).

The right side of Figure 2 shows the average results overall
using the test set in the a-a scenario. The figure indicates that
the methods based on the PV-TSM algorithm could perform the
best. Although the range and the value of the pitch-shifting
parameters differ, the privacy of the PV-TSM (2, 3) and the PV-
TSM (3, 5) in the a-a scenario are comparable. The primary
baseline (B1a and B1b) could not achieve as high a privacy
performance in the o-a scenario. Similarly, the privacy of the
second baseline could be increased by changing the McAdams
coefficient from a fixed value to a randomly selected value from



Table 4: ASVeval of VPC 2022 results.

EER (%)Dataset Gender Weight Orig B1a B1b B2b PV-TSM (3,5) PV-TSM (2,3)
female 0.25 8.81 17.76 19.03 11.36 12.93 21.88Libri male 0.25 1.24 6.37 5.59 1.40 2.17 5.59
female 0.20 2.92 12.46 8.25 6.68 10.33 8.70VCTK (diff) male 0.20 1.44 9.33 6.01 6.35 4.32 2.43
female 0.05 2.62 13.95 9.01 5.81 7.27 7.85

Dev

VCTK (comm) male 0.05 1.43 13.11 9.40 8.83 3.13 2.28
Weighted average dev 3.59 11.74 9.93 6.53 7.23 9.60

female 0.25 7.66 12.04 9.49 7.12 19.34 13.87Libri male 0.25 1.11 8.91 7.80 1.11 6.46 5.35
female 0.20 4.94 16.00 10.91 16.92 9.77 6.84VCTK (diff) male 0.20 2.07 10.05 7.52 7.69 4.99 3.79
female 0.05 2.89 17.34 15.32 10.98 6.65 6.07

Test

VCTK (comm) male 0.05 1.13 9.89 8.19 4.80 1.41 1.70
Weighted average test 3.80 11.81 9.18 7.77 9.81 7.32

Table 5: ASReval of VPC 2022 results.
WER (%)Dataset Orig B1a B1b B2b PV-TSM (3,5) PV-TSM (2,3)

Libri 3.82 4.34 4.19 4.32 4.38 4.20Dev VCTK 10.79 11.54 10.98 11.76 11.96 11.60
Average-dev 7.31 7.94 7.59 8.04 8.17 7.90

Libri 4.15 4.75 4.43 4.58 4.59 4.45Test VCTK 12.82 11.82 10.69 13.48 12.98 13.20
Average-test 8.49 8.29 7.56 9.03 8.79 8.83

Table 6: Pitch correlation results.

ρF0

Dataset Gender Weight PV-TSM (3,5) PV-TSM (2,3)
female 0.25 0.83 0.86Libri male 0.25 0.77 0.82
female 0.20 0.86 0.88VCTK (diff) male 0.20 0.75 0.81
female 0.05 0.82 0.85

Dev

VCTK (comm) male 0.05 0.71 0.79
Weighted average dev 0.80 0.84

female 0.25 0.85 0.88Libri male 0.25 0.73 0.79
female 0.20 0.87 0.89VCTK (diff) male 0.20 0.80 0.84
female 0.05 0.84 0.86

Test

VCTK (comm) male 0.05 0.76 0.80
Weighted average test 0.81 0.85

a particular range. However, it greatly degraded speech intelli-
gibility.

We also conducted some evaluations based on the VPC
2022. First, we conducted the ASVeval while considering the
semi-informed attack model (a-a scenario). In this attack model,
the attacker has access to the anonymization method for the ut-
terance level (without knowing the detailed parameters that rep-
resent the speaker identity). Table 4 shows the results of this
evaluation. Although not as good as the B1a, the PV-TSM (3,
5) could perform slightly better than the B1b. Note that, in the
PV-TSM (3, 5), the ASVeval was trained with the anonymiza-
tion algorithm with prior information on the shifting parameter
range (3, 5). If the attacker has no information about the shifting
parameter, the performance will be better.

We acknowledge that no significant interpretation can be
obtained from the results of the new ASReval in the VPC 2022
(by retraining it with anonymized speech as shown in Table
5). For instance, the average-dev results using the VPC 2020
ASReval for the B2b indicate that the speech intelligibility is
highly distorted in comparison with the B1a (the WER of the
B1a and the B2b are approximately 11.46% and 44.26%, re-
spectively). However, the VPC 2022 ASReval outputs nearly
similar results for the B1a and the B2b (the WER of the B1a
and the B2b are approximately 7.94% and 8.04%, respectively
[29]). Therefore, we limited discussion on the new ASReval

Table 7: Gain of Voice Distinctiveness results.
GVDDataset Gender Weight PV-TSM (3,5) PV-TSM (2,3)

female 0.25 -1.71 -2.38Libri male 0.25 -1.11 -1.14
female 0.20 -1.76 -2.34VCTK (diff) male 0.20 -2.05 -1.93
female 0.05 -1.13 -1.82

Dev

VCTK (comm) male 0.05 -1.62 -1.80
Weighted average dev -1.60 -1.92

female 0.25 -1.53 -1.80Libri male 0.25 -1.42 -1.53
female 0.20 -1.44 -1.64VCTK (diff) male 0.20 -1.01 -0.92
female 0.05 -1.23 -1.70

Test

VCTK (comm) male 0.05 -0.72 -0.71
Weighted average test -1.32 -1.47

results in this study.
Alternatively, we calculated the pitch correlation (ρF0 ) and

the gain of voice distinctiveness (GVD) that described in [29] as
secondary utility metrics. The weighted average ρF0 for test set
using B1a, B1b, B2b, and PV-TSM (3,5) are 0.77, 0.80, 0.62,
and 0.81, respectively. These results indicate that the PV-TSM
(3, 5) successfully preserves the intonation to some extent (as
described in [29]). Moreover, the results of GVD show that
our method preserves the voice distinctiveness better than the
baseline systems (B1a, B1b, and B2b). The full results of pitch
correlation and gain of the voice distinctiveness are shown in
Tables 6 and 7.

We publicly demonstrate anonymized speech output from
our methods compared with baseline systems (B1a, B2a, and
B2b)3. The stimuli in this demonstration is randomly selected
from the LibriSpeech test dataset (one female utterance and one
male utterance).

5. Conclusions
We investigated conventional TD-PSOLA and PV-TSM TSM
approaches to speaker anonymization. We determined the pos-
sible voice privacy protection against x-vector-based ASV sys-
tems via extensive objective evaluations per the VPC 2020 and
the VPC 2022. We found that the TD-PSOLA algorithm can be
used for pitch shifting but is insufficient for privacy protection in
the ASV system. However, pitch shifting by the PV-TSM algo-
rithm for speaker anonymization performs significantly better
than one using the McAdams coefficient, providing the high-
est balance of both privacy and utility metrics in the a-a sce-
nario in comparison with the baseline systems. Additionally,

3http://www.jaist.ac.jp/˜candylim/VP2022/
demo_web/demo.html



our method using PV-TSM can preserve secondary utility met-
rics (i.e., pitch correlation can represent intonation and the gain
of voice distinctiveness to some extent). In future work, we will
more thoroughly investigate appropriate shift parameters. We
will also explore non-linear pitch shifting using the PV-TSM
algorithm.
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