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Voice cloning of growing interest to

Real-World Problem Examples  :corsandcybercriminais

By Kitti Palmai

EVERYONE WILL BE ABLE TO CLONE
THEIR VOICE IN THE FUTURE o) o | s

Al speech synthesis is quick, easy, and uncannily good NHK docudrama reveals telephone scam tactics

Thai police last month raided a residence in Pattaya where an alleged telephone
swindling operation was taking place. They discovered 15 Japanese nationals
suspected of calling retired people in Japan and fooling them into purchasing
== = electronic money. Japanese police say they will arrest the ...

New Al research makes it easier to create fake
footage of someone speaking

https://www.theverge.com/2017/7/12/15957844/ai-fake-video-audio-
speech-obama



2. Speaker Anonymization (Voice Privacy Challenge (VPC))
Privacy Preservation by Speaker Anonymization

w
Feature Speech .
Extraction Anonymization Synthesis

Anonymized
speech

Input speech

Requirements:

Speaker identity must be hidden

The output anonymized speech should be natural and intelligible
The language information should be preserved

Following a speaker-to-speaker correspondence (each speaker
corresponds to a pseudo-speaker)
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2. Speaker Anonymization

VVPC Protocols

« Scenario
» Speakers want to hide their identity while allowing any desired
goal to be potentially achieved.
» The attacker has access to a single utterance and wants to
identify the corresponding speaker.

« Attack model (the attacker has access to various amounts of
data):
» one or more anonymized trial utterances,
» possibly, several additional utterances for each speaker,
which may or may not have been anonymized and are
called enroliment utterances



2. Speaker Anonymization
Baseline Systems

@® B1a: primary baseline with neural source-filter (NSF)
model + x-vector

@® B1b: primary baseline with a unified HiFi-GAN NSF
model + x-vector

(® B2a: speaker anonymization using McAdams
coefficients (¢ = 0.8)

(® B2b : speaker anonymization using McAdams

coefficients (a~U(0.5,0.9))



3. Proposed Metho
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Time-Scale Modification (TSM) Approach
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4 Frame relocation and adaptation

TD-PSOLA




original TD-PSOLA shift 2 semitones PV-TSM shift 2 semitones

3. Proposed
Methods

Pitch
Shifting
using TSM
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4. Experiments
Experimental Setup

@ Dataset for development (Dev) and evaluation (Test):
LibriSpeech and VCTK

(® Evaluation
Privacy: using an automatic speaker verification (ASV)

Utility: using an automatic speech recognition (ASR),
pitch correlation, the gain of voice distinctiveness



4. Experiments

ASVeval (VPC 2020 Scenario)

(® Speaker verifiability (ASVeval) : High EER = better privacy

Enrollment
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4. Experiments

Results (VPC 2020 - ASReval)

@® Speech Intelligibility : Low WER = better utility
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4. Experiments

Results (Privacy vs Utility)
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4. Experiments

Results (VPC 2022 - ASVeval)

® Semi-informed

Enrollment

Test trials
attack model MMM L asVora
:
EER
2 Q‘M”Mu Anonymization |— _’ASV:‘?Eﬁn‘—
EER (%)

Dataset | Gender | 20 | Bla | Blb | B2b | PV-TSM (3,5)
o female | 7.66 | 12.04 | 949 | 7.12 19.34
1on male 111 | 801 | 7.80 | 1.11 6.46

- female | 4.94 | 16,00 | 10.91 | 16.92 9.77

VCIK (diff) = 307 11005 | 7.52 | 7.6 4.99
female 2.89 17.34 15.32 10.98 6.65

VCIK (comm) — 13 [ 989 | 8.19 | 4.80 T41
| Weighted average test | 3.80 | 11.81 | 9.18 | 7.77 | 9.81

<+—— Anonymization
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4. Experiments

Results (VPC 2022 - secondary utility metrics)
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5. Conclusion and Future Work

(® Two major algorithms of TSM were investigated (TD-PSOLA and PV-TSM)
for speaker anonymization based on VVPC protocols.

(® TD-PSOLA algorithm can be used for pitch shifting but is insufficient for
privacy protection in the ASV system.

(® In contrast, pitch shifting by the PV-TSM algorithm for speaker
anonymization providing the highest balance of privacy-utility metrics
(esp., a-a scenario/lazy-informed).

(® Method of PV-TSM also can preserve secondary utility metrics.

(® In future, we will investigate more the shift parameter and non-linear
pitch shifting using the PV-TSM algorithm.
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