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Abstract
This paper presents the ongoing efforts on voice anonymization
with the purpose to securely anonymize a speaker’s identity in a
hotline call scenario. Our hotline seeks out to provide help by
remote assessment, treatment and prevention against child sexual
abuse in Germany. The presented work originates from the joint
contribution to the VoicePrivacy Challenge 2022 and the Sympo-
sium on Security and Privacy in Speech Communication in 2022.
Having analyzed in depth the results of the first instantiation of
the Voice Privacy Challenge in 2020, the current experiments
aim to improve the robustness of two distinct components of
the challenge baseline. First, we analyze ASR embeddings, in
order to present a more precise and resistant representation of the
source speech that is used in the challenge baseline GAN. First
experiments using wav2vec show promising results. Second, to
alleviate modeling and matching of source and target speaker
characteristics, we propose to exchange the baseline x-vectors
speaker identity features with the more robust ECAPA-TDNN
embedding, in order to leverage its higher resolution multi-scale
architecture. Also, improving on ECAPA-TDNN, we propose to
extend the model architecture by integrating SE-Res2NeXt units,
as the expectation that by representing features at various scales
using a cutting-edge building block for CNNs, the latter will per-
form better than the SE-Res2Net block that creates hierarchical
residual-like connections within a single residual block, allow-
ing them to represent features at multiple scales. This expands
the range of receptive fields for each network layer and depicts
multi-scale features at a finer level. Ultimately, when including
a more precise speaker identity embedding we expect to reach
improvements for future anonymization for various application
cases.
Index Terms: VoicePrivacy challenge 2022, Speaker anonymiza-
tion, Speech recognition

1. Introduction
Privacy-preserving data processing has developed into an active
study subject in recent years as a result of the rising need for
privacy protection. The European General Data Protection Reg-
ulation (GDPR) under EU law and comparable rules in many
nations’ national laws are two factors contributing to this.

Speech data contains a lot of personal information that may
be revealed by listening or by automated systems even if there
is no legal definition of privacy [1]. Age, gender, ethnicity,
geographic region, physical or emotional condition, political

leanings, and religious convictions are a few examples of this.
The identity of the speaker can potentially be revealed through
speaker recognition technologies. Therefore, it is not surpris-
ing that there is a greater interest in creating voice technology
privacy preservation solutions. In the present application case,
we pursue anonymization in order to hide the identity of a per-
son calling a help hotline for remote assessment, treatment and
prevention against child sexual abuse in Germany. Since help-
seekers require a high degree of anonymity when self-reporting
on individual inclination and preferences, anonymization is a pre-
requisite to foster engagement and trust towards the therapeutic
offer connected to the service.

The VoicePrivacy [2] initiative is a concrete instantiation
evolved out of the need to foster and benchmark anonymization
performance and standardize the evaluation of these throughout
the community. This effort intends to bring together a new
community of researchers, engineers, and privacy specialists. As
a part of this program, the initial VoicePrivacy challenge was
held in 2020 [3].

Anonymization is the process of removing personally iden-
tifying information from voice signals while maintaining other
features. In contrast to the methodologies mentioned above,
it enables the use of the data for supervised machine learning
and is simple to incorporate into current systems. Note that
the word ”anonymization” in the legal profession denotes the
accomplishment of this objective. Even if the procedure under
consideration failed in this instance, it still pertains to the task
at hand. Anonymization entails changing not just the speaker’s
voice but also other characteristics and moods, the words used
in spoken material, and background noises that, when taken into
account in conjunction with one another and maybe with outside
data, may reveal the speaker’s identity.

The VoicePrivacy 2020 Challenge focuses on voice
anonymization as the first step in achieving this objective. This
involves changing the speaker’s voice in order to conceal their
identity as much as possible while preserving all other speech
features, like traits, states, and spoken contents. Despite the
attractiveness of voice anonymization, the amount of privacy
protection demanded by these solutions is ambiguous because
there is no formal task specification, no formal attack model,
and no shared datasets, protocols, or measurements. All of these
issues are addressed by the series of VoicePrivacy Challenges.

Obfuscation, encryption, distributed learning, and
anonymization are some current methods for protecting speech
privacy. The voice signal is suppressed or altered using



obfuscation techniques [4] to the point where no information
about the original speaker can be retrieved. However, the derived
data utilized for learning (such as model gradients) may still
leak information about the original data [5, 6]. Decentralized or
federated learning approaches learn models using distributed
data without accessing it directly [7].

Noise addition [8], speech transformation [9, 10], voice
conversion [11, 12, 13], and disentangled representation learn-
ing [14] are methods for voice anonymization.

2. Related Work
This section gives a brief overview of the results from the last
Voice Privacy Challenge and the Baseline Provided by the chal-
lenge hosts.

2.1. VPC 2020

The first edition of the VPC was held in 2020, offering two base-
lines to be improved. The primary baseline performs anonymiza-
tion with x-vectors. x-vectors [15] represent the speaker’s in-
dividual characteristics. They result from training a time-delay
neural network on the speaker classification task. The primary
baseline anonymizes utterances by swapping the x-vector from
the input utterance with a pseudo x-vector, which is the average
of multiple x-vectors extracted from a separate pool. These vec-
tors are the farthest away from the input’s x-vector according to
PLDA distance. Bottleneck features describe the utterance. They
result from a time-delay neural network trained on the speech
recognition task. Both these features are then concatenated with
the vector containing pitch values of each time window. The re-
sulting matrix is fed to a speech synthesis module that computes
Mel-filterbanks, which are finally transformed into a speech
signal by an NSF model.

Seven teams participated in the challenge [3]. Four of them
modified the primary baseline, focusing on how x-vectors are
anonymized. Some approaches revolved around optimizing the
combination of existing x-vectors, while others attempted to
generate new x-vectors with domain-adversarial training [16].
Increasing the size of the speaker pool from which the x-vectors
are drawn to create a pseudo x-vector. Another model used a
voice indistinguishability metric to select x-vectors from the pool,
which they created with the test set instead of a separate dataset,
as the baseline does. They also implemented a different approach
for speech synthesis, comprising two modules: the end-to-end
acoustic model ESPnet [17], which produces Mel-spectrograms
from Mel-filterbank features and speaker x-vectors, and a module
based on the Griffin-Lim algorithm [18] that transforms the Mel-
spectrogram into a speech waveform.

The system was objectively evaluated on several datasets,
which include trial and enrollment utterances of speakers. Trial
utterances are the ones evaluated, whereas enrollment utterances
serve as additional information for the attack system, which at-
tempts to identify the original speaker behind each anonymized
trial utterance. The participating anonymization systems are
evaluated in two scenarios: one where only trial utterances
are anonymized, and one where also enrollment utterances are
anonymized, which makes it easier for the attack system. The
results show that using x-vectors provides better anonymization
than signal processing. However, no system was superior in both
evaluation scenarios. None of the proposed systems achieved
an equal error rate of 50 % on the harder scenario, meaning
that they do not provide successful anonymization. On the other
hand, many systems achieved successful anonymization in the

easier scenario.
The quality of the speech produced by the anonymization

systems was evaluated objectively, using the word error rate
(WER). All anonymization systems degraded the quality of the
original speech, as expected. Anonymization systems based on
x-vectors again performed better than systems based on signal
processing techniques. However, subjective experiments prove
signal processing methods to output anonymized speech with
higher naturalness and intelligibility.

2.2. New Baselines

The provided 2022 challenge Baselines follow two distinct ap-
proaches. The Baseline B1 focuses on anonymization using
x-vectors and neural waveform models. B1.a was the primary
baseline of the 2020 VoicePrivacy Challenge[2]. The model
features three steps. The input speech is first passed through the
feature extractors, obtaining F0, ASR acoustic model (AM) bot-
tleneck features (BN) and x-vectors. The F0 extraction is done
by pYAAPT1. In the second step, the x-vector is anonymized.
This is done by choosing a new target speaker out of a pool of
x-vectors. The last step is speech synthesis. Using an acoustic
model and a neural waveform model, a speech waveform is pro-
duced based on the anonymized x-vector and the original BN
and F0 data. The 2022 Version of the challenge [3] introduces
a new baseline, B1.b. (see figure 1). This baseline replaces the
acoustic- and neural waveform model with a HiFi-GAN [19].

Figure 1: Baseline B1.b [3]

Baseline B2, is using the McAdams coefficient, sampling the
McAdams coefficient for each source speaker in the evaluation
set, from a uniform distribution with min α value 0.5 and max
value 0.9.

2.3. Evaluation plan

Verifying that the speaker’s anonymity and the content were
successfully preserved is one of the most important components
of anonymization. Both objective and subjective techniques
can be used to accomplish this. Automated speaker verification
(ASV) and automatic speech recognition (ASR) technologies
can be used to validate, if the speaker’s identity was success-
fully concealed and the content (and intelligibility) were retained
[20]. The listening tests using human assessors, who rate con-
tent, speaker identification, and intelligibility, on the other hand,
might yield a subjective assessment.

The challenge organizers use the Equal Error Rate (EER)
as the privacy metric. This metric is applied to the two main
evaluation scenarios: unprotected and semi-informed. In the
first, the user is not anonymized, and the attacker has access
to the original enrollment data. In the second scenario, the
speaker is anonymized and the attacker uses enrollment data

1pYAAPT: http://bjbschmitt.github.io/AMFM decompy/pYAAPT.html



with different pseudo-speakers, anonymized on utterance-level.
Word Error Rate (WER) was picked as the primary utility metric
and is evaluated on speaker- and utterance-level. The lower the
WER the greater the utility [3] Pitch correlation and gain of
voice distinctiveness are listed as secondary utility metrics.

The approach for the subjective evaluation is similar to that
used for the VoicePrivacy 2020 Challenge [2]. Evaluators will
be asked to grade a single original or anonymized trial utterance
at a time for assessments of naturalness and intelligibility. The
original utterance and an original or anonymized trial utterance
obtained from the same or a different speaker will be used in
pairs for assessments of speaker verifiably. The comparability of
the voices in the enrollment and trial utterances will be graded
by the examiners.[3]

3. Our Approach
The starting point of our approach is the baseline B1.b, which
introduces the HiFi-GAN. According to the results presented in
the evaluation plan [3], the baseline B1.b provides the lowest
WER, meaning that the quality of the anonymized speech it
outputs is the best among the baselines. The baseline B1.a,
which extracts the same features from the input utterance but
transforms them into a waveform differently, provides the best
EER, meaning it provides the best anonymization. It is to be
expected that the system with the best WER does not offer the
best EER, as an increase in utility inevitably leads to a decrease
in privacy. At least this was one of the findings of the first
challenge. Therefore, we focus on improving the model that
offers the best WER, namely the baseline B1.b.

Figure 2: Adaptation of Baseline B1.b

Figure 2 shows the modifications we made to improve the
baseline. We switched the components 2 and 3 to methods
that have proven themselves as state of the art in their field.
Component 2, the ASR AM is replaced with wav2vec 2.0 [21],
to extract the bottleneck features. The x-vector extractor are
replaced by an ECAPA [22] extractor, in the component 3.

3.1. Wav2vec 2.0

In the provided baseline architecture, bottleneck (BN) features
are extracted from the final hidden layer of a factorized time
delay neural network (TDNN-F) model architecture, which is
trained to classify triphones. The BN features are used to encode
the linguistic content of the speech. Instead, we use wav2vec
2.0 Base model, a semi-supervised method to extract speech
representations directly from the audio. The model is pretrained
and fine-tuned with Librispeech. The representations of speech
are obtained from the last layer of the fine-tuned model. The
model learns contextualized speech representations by randomly
masking the feature vectors before feeding the latent speech
representations to the transformers.

Figure 3: The diagram of the proposed architecture.

3.2. Anonymization Process

The neural network is used by the current speaker verification
methods to derive speaker representations. The effective x-vector
architecture uses TDNN to project variable-length utterances into
fixed-length speaker characterization embeddings by applying
statistics pooling. We aim at obtaining highly accurate x-vectors
on the task of speaker verification and try to improve the perfor-
mance of the original TDNN architecture [23]. In this regard, our
basic architecture follows an established multi-scale architecture,
ECAPA-TDNN [22]. Based on current trends, we suggest some
improvements to the statistics pooling layer and TDNN design
in this study.

Our proposed architecture, shown in Fig. 3, is based on
ECAPA-TDNN architecture along with training and inferencing
procedures with integrating SE-Res2Next units.

3.2.1. Multi-Scale Backbone Module

With a stack of convolutional layers that automatically learn
coarse-to-fine features, multi-scale feature representation has
been incorporated into the CNN architectural design from the
outset [24]. Shortcut connections to residual networks and the
bottleneck module both work well to reduce the number of pa-
rameters, successfully addressing the issue of gradient disappear-
ance in deep CNN designs.

By substituting group convolution for standard convolution
in order to enable more intricate transformations, ResNeXt-50
[25] added cardinal dimension to the bottleneck module to enable
more complex transformations. In order to integrate the multi-
scale capacity of the feature representation into the module, Gao
et al. [26] replaced the 3× 3 convolution with a series of 3× 3
convolution with smaller filter groups that are connected in a
hierarchical fashion. This might be considered a network inside
of a network. The Res2NeXt, therefore, expands the range



of receptive fields for each network layer and depicts multi-
scale features at a finer level. So by integrating hierarchical
multi-scale feature representation inside the bottleneck module,
Res2NeXt-50 [26] enhanced ResNeXt-50 by enabling multi-
scale feature representation at both the global and local levels.
In order to accomplish a channel-wise dynamic calibration of
feature responses and provide a stronger feature representation
capability, SE-Res2NeXt-50 integrated the SE block [27].

(a) (b)

Figure 4: Comparison of the (a) bottleneck block (SE-ResNeXt)
and (b) multi-scale block (SE-Res2NeXt). Group convolution is
used by ResNeXt and Res2NeXt with 8 groups.

3.2.2. Res2NeXt Module

A group of 3 × 3 filters is substituted in the SE-Res2NeXt in
Fig. 4 with smaller groups of filters, while connecting various
filter groups in a hierarchical residual-like manner. Following
a 3 × 3 convolution, the input is divided into s feature map
subsets, indicated by the symbol Xi, where i ∈ {1, 2, ..., s}.
In comparison to the input feature map, each feature subset Xi

has the same spatial extent but 1/s number of channels. Each
Xi has a matching 3 × 3 convolution, denoted by Ki(), with
the exception of X1, which is delivered directly to the output.
The feature subset Xi and the output Ki−1() from the previous
3× 3 convolution are then fed into Ki(). Up till all groups have
been processed, this procedure is repeated. The output of the
module is produced by concatenating the outputs of all groups
and passing them to a 1 × 1 convolution; hence, Yi can be
represented as:

Yi =


Xi i=1
Ki(xi) i=2
Ki(xi + yi−1) 2 < i ≤ s

4. Experiments
We plan to evaluate our propositions by running a series of exper-
iments to compare against each other. As a reference, we use the
Results from the Baseline B1.b. Running the standard settings
without any adaption yields a weighted average EER on the orig-
inal test-set of 3.786%, whereas, for a weighted average EER
for the anonymized data is 9.854%. The average WER of the

original test-set is 8.475%, while the average of the anonymized
data is 7.330%.

We are testing the changes individually, first only replacing
the x-vector embeddings with the standard ECAPA embeddings,
and then with multiple versions of our extended implementation.
We expect this to improve the EER in terms of anonymization
since this architecture significantly outperforms state-of-the-art
TDNN-based systems in ASV tasks[22]. We also run a test
where only the ASR is exchanged with Wav2Vec, to determine
which component has the greatest impact. We expect this to have
a high impact on the WER, as the Wav2Vec architecture is state
of the art in ASR[21]. Subsequently, the combination of these
components is also tested. All of these experiments follow the
provided evaluation plan (see. section 2.3).

4.1. Training the ECAPA embedding extractor

We evaluate the performance of proposed architecture on the
ECAPA embedding on the development part of the VoxCeleb2
dataset with 5994 speakers as training data. For hyperparameter
optimization, VoxCeleb1 test set aside as a validation set. All
models are trained using a standard Adam optimizer with cyclical
learning rates ranging between 1e-8 and 1e-3. Using AAM-
softmax with a margin of 0.2 and softmax prescaling of 30 for 4
cycles, all systems are trained. We investigate the 1024 channel
convolutional frame layer architecture of the proposed ECAPA-
TDNN. The Res2XBlock takes into account various settings for
the scale and cardinality dimensions, as indicated in Table 1.
The final fully-connected layer has 192 nodes in total.

5. Results
We evaluate the effectiveness of the baseline model using varoius
CNN dimensions, including scale and cardinality. As indicated
in Table 1, a number of networks are trained and evaluated with
different dimensions. The findings of the benchmark experi-
ments [26] imply that scale is an effective dimension to enhance
model performance. Moreover, scaling up is more efficient than
other dimensions. In our case s = 8 performs better than scale 4
in terms of performance. However, the model with scale 16 is
not successful, about which we assume that the size of input is
not sufficient enough to support the many scales.

Table 1: Top-1 test error (%) for the VoxCeleb dataset. The
values of the parameters c and s indicate the cardinality and
scale, respectively.

Architecture Model Dimensions EER(%)

ECAPA-
TDNN

Res2Net s8 1.10

Extended
ECAPA-
TDNN

Res2NeXt s4× c8 1.19

s8× c8 1.12
s16× c16 1.21

Our proposed architecture, with various values of c=8, 16,
does not outperform the baseline in terms of the dimension of
cardinality. The cause for this could be the format of the repre-
sentation. In contrast to [26], ECAPA-TDNN use 1-dimensional
TDNN-specific SE-blocks. As a next preliminary experiment, in-
spired by [28], we integrate a 2D convolutional stem in ECAPA-
TDNN baseline. We use 2D convolutions based on Res2NeXt
as the foundation for the initial network layers. Because the



Extended ECAPA-TDNN with scale s=8 and cardinality c=8
achieves the best performance in comparison to the other set-
tings, we consider this structure for training the 2D ECAPA-
TDNN. We evaluate the performance of proposed architecture
with small subset of the development part of the VoxCeleb2
dataset. Table 2 demonstrates how our proposed architecture
with 2D data representation outperforms the baseline. While
these experiments only produce preliminary results, the direction
of our future research is motivated by the indicative success of
the 2D convolution stem for the small data set used in these
experiments. As Table 2 indicates, using a 2D ECAPA-TDNN
with Res2NeXt residual units improves the preliminary EER
results by roughly 0.5% absolute.

Table 2: top-1 test error (%) for the VoxCeleb dataset.

Architecture Residual Units EER(%)

ECAPA-TDNN Res2Net 13.37
2D ECAPA-TDNN Res2NeXt 12.89

6. Conclusion
This study presents an extended ECAPA-TDNN and 2D ECAPA-
TDNN with Res2XBlock integration for speaker verification. In
our experiments, extending ECAPA-TDNN with 1-dimensional
TDNN-specific SE-blocks does not improve by adding an extra
dimension of cardinality. However, changing to 2D ECAPA-
TDNN we reach a relative improvement of roughly 0.5% abso-
lute in EER over a strong baseline system applied to the Vox-
Celeb evaluation set.

In our upcoming study, we will keep evaluating the effec-
tiveness of different types of residual units while integrating
them with the 2D ECAPA-TDNN representation with more data
utilizing additional datasets and generating extra samples for
each utterance by data augmentation.
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