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Ünal Ege Gaznepoglu1,2, Anna Leschanowsky1,2, Nils Peters1

1 Friedrich-Alexander-Universität, International Audio Laboratories Erlangen, Germany
2 Fraunhofer IIS, Erlangen, Germany

{uenal.ege.gaznepoglu, anna.leschanowsky}@iis.fraunhofer.de,
nils.peters@audiolabs-erlangen.de

Abstract
We introduce a novel method to improve the performance of the
VoicePrivacy Challenge 2022 baseline B1 variants. Among the
known deficiencies of x-vector-based anonymization systems is
the insufficient disentangling of the input features. In particu-
lar, the fundamental frequency (F0) trajectories, which are used
for voice synthesis without any modifications. Especially in
cross-gender conversion, this situation causes unnatural sound-
ing voices, increases word error rates (WERs), and personal in-
formation leakage. Our submission overcomes this problem by
synthesizing an F0 trajectory, which better harmonizes with the
anonymized x-vector. We utilized a low-complexity deep neu-
ral network to estimate an appropriate F0 value per frame, using
the linguistic content from the bottleneck features (BN) and the
anonymized x-vector. Our approach results in a significantly
improved anonymization system and increased naturalness of
the synthesized voice. Consequently, our results suggest that
F0 extraction is not required for voice anonymization.
Index Terms: neural networks, fundamental frequency (F0),
bottleneck features (BN), x-vectors

1. Introduction
Introduction of the VoicePrivacy Challenge has stirred a multi-
national interest in design of voice anonymization systems. The
introduced framework consists of baselines, evaluation metrics
and attack models and has been utilized by researchers to im-
prove voice anonymization. Figure 1 depicts baseline B1 (re-
ferred to as B1.a in the current edition) [1]. Previous submis-
sions mostly focused on changes to the individual blocks of the
baselines. However, regardless of the individual modifications
to this baseline by different groups, the obtained audio record-
ings are considered ‘unnatural’ [2].

To improve anonymization performance as well as intelli-
gibility, F0 modifications have been explored in the previous
edition of the VoicePrivacy Challenge and subsequent works
utilizing the challenge framework. Among the techniques in-
vestigated are creating a dictionary of F0 statistics (mean and
variance) per identity and utilizing these for shifting and scaling
the F0 trajectories [3], applying low-complexity DSP modifica-
tions [4] and applying functional principal component analysis
(PCA) to get speaker-dependent parts [5]. Their results show
that F0 trajectories contribute to anonymization and modifica-
tions are promising to improve the performance of the system.

Along the same lines, we hinted in a previous work that
disentangling the features can increase the performance [4]. In
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particular, F0s are a complex combination of the identity of the
speaker, the linguistic meaning, and the prosody, which also
includes situational aspects such as emotions and speech rate
[6]. Many speech synthesizers, notably the neural source-filters
(NSFs), incorporate F0 trajectories as a parameter to control the
initial excitation, mimicking the voice cords [7]. Thus, data-
driven parts of the architectures have relatively little control
over shaping the excitation. This motivated us to investigate
ways to apply a correction to the F0 trajectories before the syn-
thesis such that they match the BNs and x-vectors. Figure 1
shows how our proposal integrates into the baseline B1.

2. Our Contributions
2.1. A regression DNN for F0 trajectories

We utilized a 3-hidden-layer deep neural network (DNN) (see
Fig. 2) to frame-wise predict F0 trajectories from the utterance
level x-vectors and the BNs. Internals of the so-called fully
connected (FC) layer is depicted in Figure 3. F0 trajectories
are predicted in logarithmic scale with a global mean-variance
normalization. Two output neurons in the last layer signify
the predicted pitch value F̂0[n] (no activation function) and the
probability of the frame signifying a voiced sound pv[n] (sig-
moid activation function). According to this probability, the F0
value for the frame is either passed as is (if the probability is
greater than 0.5), or zeroed out (otherwise). The loss function
L for a batched input is given in Equation 1 where ‘MSE(·)’ and
‘BCE(·)’ denote the ‘mean-squared error’ and ‘binary cross en-
tropy with logits’ as implemented by PyTorch. The variable v
denotes the voiced/unvoiced label of the frame and α denotes a
trade-off parameter balancing the classification and regression
tasks.

L(F0, F̂0) = MSE(F0 − F̂0)
2 + αBCE(pv, v), (1)

2.1.1. Training strategies and hyperparameter optimization

The DNN is implemented using PyTorch [8], and trained us-
ing PyTorch Ignite [9]. All files in the libri-dev-* and
vctk-dev-* subsets are concatenated into a single tall ma-
trix, then a random (90%, 10%) train-validation split is per-
formed, allowing frames from different utterances to be present
in a single batch. We use early stopping after 10 epochs without
improvement and learning rate reduction (multiplication by 0.1
after 5 epochs without improvement in validation loss).

OpTuna [10] tunes the learning rate lr, the trade-off pa-
rameter α and the dropout probability p. Optimal values ob-
tained after 50 trials are listed in Table 1. We found the system
to perform better without dropout, thus p = 0.
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Figure 1: Signal flow diagrams of the baselines B1.a (if neural vocoder is an AM-NSF), B1.b (if neural vocoder is NSF with GAN) and

joint-hifigan (if neural vocoder is the original HiFi-GAN) together how our contribution ”F0 regressor” is integrated.
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Figure 2: (a) Architecture of our proposed neural network. The
numbers below the expression ”FC” denote the number of neu-
rons in each layer. ”FC” denotes a fully connected layer. The
circles with numbers 1, 2 in the last layer denote the output of
nth neuron in that layer (after dropout if applicable).

Parameter Value

α 0.00022
lr 0.0007
p 0.0

Table 1: Hyperparameter values obtained using OpTuna

3. Evaluation
3.1. Analysis of the generated F0 trajectories

We verified the performance of our F0 regressor by visualiz-
ing the reconstructions for matched x-vectors and cross-gender
x-vectors. The latter allows to evaluate the generalization capa-
bilities. In Figure 4, the F0 estimates for unaltered target and
source speakers (subplots 1 and 2) as well as a cross-gender
F0 conversion is given (subplot 3) for the linguistic features
from the female speaker and the x-vector from the male speaker.
Resulting estimated F0 trajectory has a mean shift of roughly
60 Hz and correctly identifies voiced and unvoiced frames.

While we acknowledge the necessity of thorough objective
and subjective evaluation of our methodology, due to the time
and space constraints we believe it is better suited as part of a
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Figure 3: Internals of a fully connected layer. It comprises of
a linear layer followed by a dropout layer, where the dropout
probability is p. The circles with numbers 1, 2, . . . , N denote
the number of the neuron in that layer.

different publication.

3.2. Evaluation via challenge framework

We executed the evaluation scripts provided by the challenge or-
ganizers. The anonymization procedure for the evaluation sys-
tem training utilized the same model we obtained by training
on the development subsets. As our system does not include a
tunable parameter that governs the trade-off between the equal
error rate (EER) and WER, we submit a single set of results.
As shown in Table 2, our system significantly outperforms the
Baseline B1.b variant joint-hifigan in terms of EER. The loss in
WER is negligible. Furthermore, our EER is also significantly
better than any other baseline system (c.f. [12]). For every data
subset the pitch correlation ρF0 resides in the accepted interval
[0.3, 1]. The voice distinctiveness GV D suffered some losses.

4. Conclusion
In this technical report we described our VoicePrivacy Chal-
lenge 2022 submission. Rather than extracting the F0 feature
from the original speech, we proposed a novel low-complexity
DNN-based F0 synthesis method which uses the linguistic con-
tent from the BNs and the anonymized x-vector as input fea-
tures. The evaluation results indicated that our method mostly
preserved the WER, the pitch correlation score ρF0 , some re-



Dataset Sex EER [%] WER [%] ρF0 GV D [dB]
B1.b Submitted Fixed B1.b Submitted Fixed B1.b Submitted Fixed B1.b Submitted Fixed

libri-dev F 16.62 23.86 24.15 3.98 4.12 4.13 0.84 0.82 0.81 -5.86 -6.87 -8.95
M 5.44 16.15 16.61 0.73 0.68 0.65 -5.44 -5.27 -6.35

vctk-dev F 7.08 19.71 16.34

10.56 10.36 10.62

0.85 0.86 0.85 -6.57 -6.90 -10.70
M 6.55 17.42 21.69 0.74 0.69 0.70 -8.80 -9.27 -10.94

vctk-dev-com F 8.43 16.57 11.63 0.83 0.83 0.82 -5.34 -4.84 -8.17
M 9.69 17.38 22.22 0.70 0.62 0.59 -6.21 -6.51 -7.81

Ø (dev) 9.15 19.17 19.49 7.27 7.24 7.38 0.78 0.75 0.75 -6.48 -6.84 -8.95

libri-test F 8.39 22.63 22.99 4.28 4.43 4.45 0.83 0.81 0.82 -5.58 -6.16 -7.14
M 6.46 19.38 21.83 0.68 0.60 0.59 -5.52 -5.54 -5.68

vctk-test F 9.00 22.99 22.99

10.44 10.32 10.52

0.86 0.85 0.85 -8.21 -8.87 -12.42
M 8.15 17.51 17.51 0.75 0.70 0.70 -8.18 -8.81 -10.42

vctk-test-com F 11.56 19.65 19.65 0.84 0.82 0.82 -6.68 -7.34 -10.66
M 7.63 12.99 12.99 0.69 0.63 0.64 -6.11 -6.14 -7.43

Ø (test) 8.10 20.24 22.07 7.36 7.38 7.49 0.78 0.74 0.74 -6.69 -7.14 -8.68

Table 2: Results from Baseline B1.b variant joint-hifigan taken from [13] compared with the variant including our modifications.
Better performing entries (either ’Fixed’ or baseline) are highlighted for the primary metrics EER and WER. The column ’Submitted’
indicates the results we have shared before the submission deadline. The column ’Fixed’ indicates the results we obtained after fixing
a bug within our system, counting as ’late submission’. Weighted average per challenge guidelines is denoted with Ø.
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Figure 4: Ground truth F0 estimates (orange) for the input sig-
nal, obtained by YAAPT [11] (F0 extractor of the B1 baselines)
together with the F0 estimates obtained by our system.

duction in the voice distinctiveness GV D of the baseline system,
but improved the EER anonymization metric by 2.7 times. Fur-
thermore, we observed a more natural sounding voice synthesis,
especially in conditions of cross-gender voice conversion.
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