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Introduction
Speaker Anonymization

= Context: Internet hosts and smart devices process massive amount of speech
signals

= Problem: Voice signals contain sensitive information (age, gender, health
condition etc.) and could be cloned

= Solution: Modify speech signals such that it is not linkable to the original
speaker anymore, but still useful for other tasks (e.g. ASR)

i.e., a voice conversion task but without a concretely stated target speaker
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VPC Baseline B1 — ML-based & modular
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1 e s,
Facts: Fundamental Frequency FO

= FO extractors (e.g., YAAPT) are signal statistics-based and slow:
70 minutes for processing *-dev and *-test data on our system with 96-core CPU
= FO is affected by the identity, linguistic content, and prosody [1]
= Multiple works [2,3,4] concluded FO modifications could provide an advantage for
anonymization task

[1] S. Johar, “Psychology of Voice,” in Emotion, Affect and Personality in Speech: The Bias of Language and Paralanguage, S. Johar, Ed. Cham: Springer Intl. Publishing, 2016, pp. 9—15.
[2] P. Champion, D. Jouvet, and A. Larcher, “A Study of FO Modification for X-Vector Based Speech Pseudonymization Across Gender,”

[3] U. E. Gaznepoglu and N. Peters, “Exploring the Importance of FO Trajectories for Speaker Anonymization using X-vectors and Neural Waveform Models,” MLSLP2021, Sep. 2021

[4] L. Tavi, T. Kinnunen, and R. G. Hautamaki, “Improving speaker de-identification with functional data analysis of fO trajectories,” Speech Communication, vol. 140, pp. 1-10, May 2022
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Modification: Estimate FO from BN and anonymized X-Vector
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Modification: Estimate FO from BN and anonymized X-Vector
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Modification: Estimate FO from BN and anonymized X-Vector
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Block: FO Regressor
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L(Fy, Fy) = MSE(Fy — Ey)? + aBCE(py, v)

* Mean normalized log FO is predicted.
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Generalization Check: Cross gender FO conversion
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Generalization Check: Cross gender FO conversion
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Evaluation: VPC Framework

Dataset Sex EER [%] WER [%] PFG Gvp [dB]
Bl.b Submitted Fixed Bl.b Submitted Fixed Bl.b Submitted Fixed Bl.b Submitted Fixed

o F 8.39 22.63 22.99 0.83 0.81 0.82 -5.58 -6.16 -7.14
libri-test M 646 1933 2183 B 48 45 e 060 059 552 554 -5.68
vetkotest F 9.00 22.99 22.99 0.86 0.85 0.85 -8.21 -8.87 -12.42
I\i 8.15 17.51 17.51 10.44 10.32 10.52 0.75 0.70 0.70 -8.18 -8.81 -10.42
vetk-test-com F 11.56 19.65 19.65 0.84 0.82 0.82 -6.68 -7.34 -10.66
M 7.63 12.99 12.99 0.69 0.63 0.64 -6.11 -6.14 -7.43

O (test) 8.10 20.24 22.07 17.36 7.38 749 0.78 0.74 0.74 -6.69 -7.14 -8.68

Table 2: Results from Baseline B1.b variant joint -hifigan taken from [13] compared with the variant including our modifications.
Better performing entries (either 'Fixed’ or baseline) are highlighted for the primary metrics EER and WER. The column "Submitted’
indicates the results we have shared before the submission deadline. The column ’Fixed’ indicates the results we obtained after fixing
a bug within our system, counting as ’late submission’. Weighted average per challenge guidelines is denoted with @.

= And it is fast: 2 minutes using a single RTX 3090 to process *-dev and *-test datasets.
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Novel low-complexity DNN-based FO synthesis method
Input features: BNs and the anonymized x-vector

Better Anonymization:
= Avoids leakage of original FO information
= Improves EER anonymization metric by 2.5 times
= (Almost) No negative impact on the other 3 performance metrics

Better Audio Quality:

= Harmonizing FO with anonymized X-Vectors

= More natural sounding voice synthesis e.g., for cross-gender speech anonymization
Faster Processing:

= No time-consuming FO extraction at runtime
= FQ Regressor is 35x faster than YAAPT FO extractor
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Thank you for your attention!

Listening

Speaker Anonymization with samples
Feature-Matched FO Trajectories 220k
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