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Abstract
Speaker anonymization is an effective privacy protection

solution that conceals the speaker’s identity while preserving
the linguistic content and paralinguistic information of the orig-
inal speech. To establish a fair benchmark and facilitate com-
parison of speaker anonymization systems, the VoicePrivacy
Challenge (VPC) was held in 2020 and 2022, with a new edi-
tion planned for 2024. In this paper, we describe our pro-
posed speaker anonymization system for VPC 2024. Our sys-
tem employs a disentangled neural codec architecture and a se-
rial disentanglement strategy to gradually disentangle the global
speaker identity and time-variant linguistic content and paralin-
guistic information. We introduce multiple distillation meth-
ods to disentangle linguistic content, speaker identity, and emo-
tion. These methods include semantic distillation, supervised
speaker distillation, and frame-level emotion distillation. Based
on these distillations, we anonymize the original speaker iden-
tity using a weighted sum of a set of candidate speaker identi-
ties and a randomly generated speaker identity. Experimental
results demonstrate that our proposed system outperforms all
VPC 2024 baseline systems in privacy protection and paralin-
guistic preservation.
Index Terms: speaker anonymization, voice privacy 2024 chal-
lenge, voice conversion

1. Introduction
Speech data on the Internet have proliferated exponentially due
to the advent of social media, which encapsulates a wealth of
sensitive personal information such as the speaker’s identity,
age, gender, health status, personality, racial or ethnic origin,
geographical background, social identity, and socio-economic
status. This sensitive information can be recognized by speaker
identification [1], pathological condition detection [2], or other
speech attribute recognition systems. With new regulations like
the General Data Protection Regulation (GDPR) in the Euro-
pean Union [3], the privacy protection of personal data has
gained more attention.

Speaker anonymization serves as a proactive privacy pro-
tection solution, implemented before users share their speech
data. Its fundamental objective is to effectively remove a
speaker’s identity while preserving the para-linguistic infor-
mation of the original speech. To establish a fair bench-
mark and make speaker anonymization systems comparable, the
VoicePrivacy Challenge (VPC) was introduced by the speech
community and held in 2020 and 2022 [4–6]. Previous VPC
clearly defines the speaker anonymization task, benchmark,
metrics, and datasets to drive the development and innovation of
techniques dedicated to preserving the privacy of speech data.

Unlike previous VPC editions, the third edition focuses on

preserving the emotional state, a key paralinguistic attribute
in many real-world voice anonymization scenarios, such as
call centers using third-party speech analytics [7]. To evalu-
ate the performance of emotion preservation, the unweighted
average recall (UAR) for speech emotion recognition (SER) re-
places the previous voice distinctiveness and intonation metrics.
Pre-trained models for utility evaluation (linguistic content and
emotion) are trained on original data rather than anonymized
data to ensure linguistic and emotional content remains undis-
torted. Additionally, all data are anonymized at the utterance
level. The utterance-level anonymization means that the voice
anonymization system must assign a pseudo-speaker to each ut-
terance independently of the other utterances [7].

In this paper, we propose a speaker anonymization system
based on a disentangled neural codec. We introduce a serial
disentanglement strategy to perform step-by-step disentangling
from a global time-invariant representation (speaker identity) to
a temporal time-variant representation (linguistic content and
fundamental frequency). Since the duration of anonymized
speech does not change after anonymization, we assume that
the emotional characteristics correspond closely to the funda-
mental frequency. Therefore, we introduce frame-level emo-
tion distillation to disentangle the emotion-related representa-
tion, enhancing emotion preservation during the anonymization
process. Additionally, we employ a semantic teacher and self-
supervised speaker distillation to disentangle linguistic content
and speaker identity information. During the anonymization
process, the anonymized speaker identity is the weighted sum of
a set of candidate speaker identities and a randomly generated
speaker identity. Experimental results on VPC 2024 Challenge
datasets demonstrate that our proposed system effectively pro-
tects speaker identity while maintaining the original linguistic
content and paralinguistic information.

2. Related Works
The VPC series has shown that most current speaker
anonymization systems can be broadly categorized into two
classes: (1) signal-processing-based approaches [8, 9] and (2)
neural voice conversion based approaches [10–13]. We provide
an overview of these two classes of speaker anonymization ap-
proaches in this section.

2.1. Signal-processing Based Speaker Anonymization

Most signal-processing-based approaches do not require train-
ing data and directly manipulate instantaneous speech char-
acteristics. The current mainstream method focuses on ad-
justing formant frequency and F0. A typical approach uses
McAdams coefficients to introduce randomized shifts to the for-
mant frequencies [8], effectively distorting the spectral enve-
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Figure 1: An overview architecture of our proposed speaker anonymization system. The pre-trained WavLM model is frozen during
training and the red dashed lines are only used in the training process.

lope to anonymize the original speaker’s identity. Building on
this McAdams coefficients approach, Gupta et al. further ex-
tends the distortion of the spectral envelope by amplifying the
width of formant peaks [9].

2.2. Neural Voice Conversion Based Speaker Anonymiza-
tion

Neural voice conversion-based speaker anonymization gener-
ally outperforms signal-processing-based approaches in terms
of privacy and utility metrics. A typical approach involves us-
ing a pre-trained ASV model to extract speaker identity repre-
sentations [10], like x-vectors or d-vectors, while an ASR model
extracts linguistic content representations. The original speaker
representation is then replaced by averaging a set of candidate
speaker representations from an external pool [11, 12]. Can-
didates are selected based on cosine distance to ensure the
farthest representations, protecting privacy. Finally, the aver-
aged speaker representation, linguistic content, and F0 are pro-
cessed by the neural voice conversion model to generate an
anonymized mel-spectrogram. A vocoder then converts the
anonymized mel-spectrogram into anonymized speech.

3. Proposed System
3.1. Overview

As illustrated in Figure 1, our proposed speaker anonymization
system utilizes an auto-encoder architecture, which contains a
speech encoder, a speaker encoder, a decoder and a residual bot-
tleneck module. The speech encoder converts the speech sam-
ples into frame-level representations including linguistic con-
tent, speaker identity, and emotional state. We then serially
disentangle each factor, ultimately reconstructing the original
waveform from the disentangled components. Specifically, the
speaker identity is extracted by the speaker encoder, while the
residual bottleneck module disentangles the linguistic content
and emotional state. Each disentangled factor is concatenated
and used to reconstruct the original speech waveform through
the decoder.

During inference, we first disentangle the linguistic con-
tent and emotional state from the speech waveform. We then
average a set of randomly selected speaker identities and com-

bine the averaged speaker identity with a randomly generated
speaker identity to obtain the final anonymized speaker identity.
The decoder then combines the original linguistic content and
emotional state with anonymized speaker identity to reconstruct
the final anonymized speech waveform.

3.2. Factor Distillation

In this section, we will introduce the disentanglement details
and three key distillation methods.

Speaker distillation. The speaker identity extraction is a
crucial step in achieving speaker anonymization. The speaker’s
identity is a voice’s inherent and time-invariant characteristic.
We first transform the speech waveform to a mel-spectrogram
and feed it into our speaker encoder to produce a global rep-
resentation s ∈ Rd, while d represents the dimension of the
speaker representation. To ensure the speaker encoder captures
speaker identity information rather than other time-invariant in-
formation, we employ two speaker distillation losses to con-
strain the speaker encoder. We randomly sample two segments
from the same utterance and produce two global representa-
tions with the speaker encoder. Since the speaker’s identity
is time-invariant, representations extracted from different seg-
ments should be similar and belong to the same speaker iden-
tity. We use cosine similarity and an additional speaker classi-
fier with explicit labels to align the extracted global representa-
tion with the speaker’s identity. The overall speaker distillation
loss Lspk can be defined as follows:

Lspk = E[−log(C(I | s∗))]− cos(s1, s2), (1)

where s1 and s2 represent the global representation extracted
from two segments, respectively. I is the speaker identity la-
bel and cos(·) denotes cosine similarity. C(·) denote a speaker
identity classifier tasked with determining whether s∗ is associ-
ated with the corresponding speaker identity. Finally, we obtain
the speaker identity representation and can further disentangle
the speaker identity from the output of the speech encoder by di-
rect subtraction. Thus, we obtain the speaker-independent rep-
resentation r1.

Linguistic distillation. We utilize a residual bottleneck
module for hierarchical disentanglement to further disentangle



linguistic content and emotion state from r1. The residual bot-
tleneck module consists of N Vector Quantization (VQ) lay-
ers [14], with each VQ layer cascading in a residual manner.
Each quantizer contains only residual information from the pre-
ceding quantizer, making it inherently suitable for serial dis-
entanglement. Therefore, we distill the first quantizer with a
linguistic teacher. We extract the 6th layer’s output from the
pre-trained WavLM model [15] and use a K-means cluster to
transfer WavLM’s hidden features into discrete tokens, serving
as the linguistic teacher. The linguistic distillation loss Llin can
be described as follows:

Llin = E[−log(K(w) | q1))], (2)

where k(·) denote as K-means cluster, q1 and w represent the
quantized token from the first quantizer and WavLM’s hidden
feature, respectively. The linguistic distillation process is in-
spired by SpeechTokenizer [16].

Emotion distillation. After aligning the first quantizer to
linguistic content, we further constrain the residual quantizer
with the fundamental frequency (F0). Since the duration of
the anonymized speech does not change after anonymization,
we believe the emotional state corresponds closely to the F0.
Therefore, we directly use F0 to distill the residual quantizer as
follows:

Lemo = cos(f, Proj(q2)), (3)

where Proj(·) represent the linear projection. f and q2 represent
the F0 and quantized embedding of second quantizer.

3.3. Training Objectives

The training objective of our proposed anonymization system
includes a reconstruction task with adversarial training and
three distillation tasks. The reconstruction loss consists of both
time and frequency domain losses. The total reconstruction
losses are shown as follows:

Lrec = ∥X − X̂∥1 + ∥mel(X)− mel(X̂)∥1
+∥mel(X)− mel(X̂)∥2, (4)

where X and X̂ represent the original waveform and recon-
structed waveform, respectively. Meanwhile, mel(·) is an 80-
bin mel-spectrogram process using a short-time Fourier trans-
form (STFT). For adversarial loss Ladv, we follow the same
configuration with HiFi-GAN. Similar to the conventional VQ-
based models, we employ a straight-through estimator to opti-
mize the commitment loss between the input feature and quan-
tized feature as follows:

Lcom =
N∑
i=1

||xi − qi||22, (5)

where i represents the number of quantizer layers.
Generally, our proposed anonymization system is opti-

mized by the mixture of the following losses:

L = λrLrec + λaLadv + λcLcom

+λsLspk + λmLsem,+λeLemo, (6)

where λr , λa, λc, λs, λm and λe are hyper-parameters used to
balance each loss term.

3.4. Anonymization Strategy

Our proposed anonymization strategy involves combining the
averaged speaker identity and a randomly generated speaker
identity using weighted sums. To generate the averaged speaker
identity, we randomly select a set of speaker identities from the
speaker vector pool, following the same configuration as the
conventional VPC baseline setting [4,6]. Additionally, we sam-
ple a random speaker identity from a Gaussian distribution. The
original speaker identity is anonymized as follows:

sanon = αs̄+ (1− α)ŝ, (7)

where α denotes the weight parameter, s̄ and ŝ represent the
averaged and randomly sampled speaker identities, respectively.

4. Experiments Setup
4.1. Datasets

For model training, our anonymization system is trained on both
the LibriSpeech [17] and LibriTTS [18] datasets. For evalua-
tion, we use LibriSpeech-dev-clean and LibriSpeech-test-clean
for privacy and utility evaluation, while the IEMOCAP [19] de-
velopment and evaluation sets are used for emotion evaluation.

4.2. Metrics

The equal error rate (EER) is used as the privacy metric, and the
word error rate (WER) and unweighted average recall (UAR)
are used as utility metrics. A higher EER indicates better pri-
vacy protection, a lower WER indicates better intelligibility,
and a higher UAR indicates better emotion preservation. All
evaluation setups follow the same configuration as the VPC
2024 pipelines [7].

4.3. Configuration

The speech encoder is structured with four convolution blocks,
each integrating a residual unit followed by a down-sampling
layer. The number of channels doubles during downsampling,
and the strides for the four convolution blocks are set as (2, 4,
5, 8). After the convolution blocks, there is a two-layer LSTM
for sequence modeling and a concluding 1D convolution layer
with a kernel size of 7 and 512 output channels. The archi-
tecture of the decoder mirrors the encoder, utilizing transposed
convolutions in place of stride convolutions, with the strides in
the reverse order of those in the encoder. The speaker encoder
and the residual bottleneck module follow the same architec-
ture in [20] and [21]. We employ 8 quantizers in the residual
bottleneck module.

For model training, we use the AdamW optimizer with pa-
rameters β1 = 0.8, β2 = 0.99, and weight decay λ = 1e-5. The
learning rate decay followed a schedule with a decay factor of
0.99 per epoch, starting from an initial learning rate of 2×10−4.
The training process comprised a total of 50k steps, utilizing 4
NVIDIA 3090 GPUs with a batch size of 64 utterances. For the
hyper-parameters of training loss, we empirical set λr = 45,
λa = 1, λc = 0.1, λs = 1, λm = 1 and λe = 1. Regarding
the anonymization process, the speaker identity pool is selected
from the VCTK dataset. We randomly select 20 speakers and
set α = 0.9 to meet the EER threshold for condition 3, while
condition 4 employs α = 0.8.



Table 1: Averaged results over baseline systems and our proposed anonymization system on VPC 2024 development and test datasets.
F and M represent the female and male, respectively. Avg denotes average results between female and male EER results. B* denotes
different baseline systems described in VPC 2024 and C* represents the different EER conditions.

EER, % (↑) WER, % (↓) UAR, % (↑)

LibriSpeech-dev LibriSpeech-test
LibriSpeech-dev LibriSpeech-test LibriSpeech-dev LibriSpeech-test

F M Avg F M Avg

Orig. 10.51 0.93 5.72 8.76 0.42 4.59 1.80 1.85 69.08 71.06

B1 10.94 7.45 9.20 7.47 4.68 6.07 3.07 2.91 42.71 42.78

B2 12.91 2.05 7.48 7.48 1.56 4.52 10.44 9.95 55.61 53.49

B3 28.43 22.04 25.24 27.92 26.72 27.32 4.29 4.35 38.09 37.57

B4 34.37 31.06 32.71 29.37 31.16 30.26 6.15 5.90 41.97 42.78

B5 35.82 32.92 34.37 33.95 34.73 34.34 4.73 4.37 38.08 38.17

B6 25.14 20.96 23.05 21.15 21.14 21.14 9.69 9.09 36.39 36.13

C3 44.18 31.20 37.69 37.96 36.03 36.99 2.56 2.66 65.98 64.48

C4 45.31 39.60 42.45 40.66 40.26 40.46 3.51 3.19 62.93 60.87

5. Experimental Results

5.1. Privacy Protection

As shown in Table 1, our proposed anonymization system
achieves 37.69% and 36.99% on dev and test datasets in con-
dition 3, while the EER results for condition 4 are 42.45% and
40.46%, respectively. These EER results outperform all base-
line systems, especially when compared with B1 and B2. Ad-
ditionally, our proposed speaker anonymization system shows a
significant advantage in EER results compared to other baseline
systems. This indicates that our proposed system can effectively
conceal the original speaker’s identity and protect personal pri-
vacy.

5.2. Utility Preservation

Regarding intelligibility utility, the WER results of the origi-
nal speech are 1.80% and 1.85% on the dev and test sets, re-
spectively. The speech anonymized by our proposed system
achieves 2.56% and 2.66% in condition 3, that only slightly
higher than the original speech, demonstrating that our pro-
posed speaker anonymization system can effectively preserve
the linguistic content of the original speech. Compared to other
baseline systems, our proposed speaker anonymization system
also achieves the lowest WER results, especially when com-
pared to B2. The WER results indicate that B2 is undesirable as
it significantly degrades intelligibility. Even though the WER
results of condition 4 are higher than condition 3, they are still
lower than those of other baseline systems.

For emotional evaluation, our proposed system achieves
the highest UAR results compared to other baseline systems,
with 65.98% and 64.48% for the dev and test sets, respec-
tively. In condition 4, the UAR results of our proposed speaker
anonymization system are slightly lower than in condition 3 but
still higher than those of other baseline systems.

These results show that our proposed speaker anonymiza-
tion system achieves better utility preservation than baseline
systems, effectively preserving both linguistic content and par-
alinguistic information. Additionally, the utility results for con-
dition 3 are better than those for condition 4, indicating that
there is still a trade-off between privacy and utility.

6. Conclusion
In this paper, we propose our speaker anonymization system for
VPC 2024. The anonymization system is based on the disentan-
gled neural codec and we employ a serial disentanglement strat-
egy to disentangle the linguistic content, speaker identity and
emotion state step-by-step. This serial disentanglement strategy
disentangles speech representation from a global time-invariant
representation to a temporal time-variant representation. To
achieve this disentanglement, we propose three specifically de-
signed distillation methods that rely on semantic teachers or ex-
plicit labels to guide the disentanglement process. During the
anonymization process, the anonymized speaker identity is the
weighted sum of a set of candidate speaker identities and a ran-
domly generated speaker identity. Experimental results on VPC
2024 Challenge datasets demonstrate that our proposed system
effectively protects speaker identity while maintaining the orig-
inal linguistic content and paralinguistic information.
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