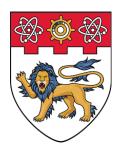
NPU-NTU System for Voice Privacy 2024 Challenge


Jixun Yao¹, Nikita Kuzmin², Qing Wang¹, Pengcheng Guo¹, Ziqian Ning¹, Dake Guo¹, Kong Aik Lee³, Eng-Siong Chng², Lei Xie¹

Audio, Speech and Language Processing Group (ASLP@NPU),
 School of Computer Science, Northwestern Polytechnical University, Xi'an, China http://www.npu-aslp.org

2. Nanyang Technological University

3. The Hong Kong Polytechnic University

Background

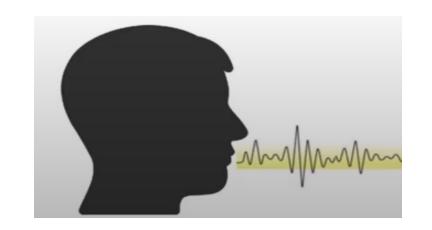
Speech Data

- Speech data are proliferating exponentially
- Applications record personal speech data which have risk to be stolen by attacker

Telecommunication

Voice Pay

Virtual Assistants



Speech Data

Sensitive Information

Speech data contain rich personal sensitive information

Age

Gender

Health State

Religious Beliefs

Other sensitive attributes

Privacy Protection

Speaker Anonymization

- Implemented before users share their speech data
- Effectively remove a speaker's identity while preserving the linguistic information and paralinguistic information

VoicePrivacy Challenge

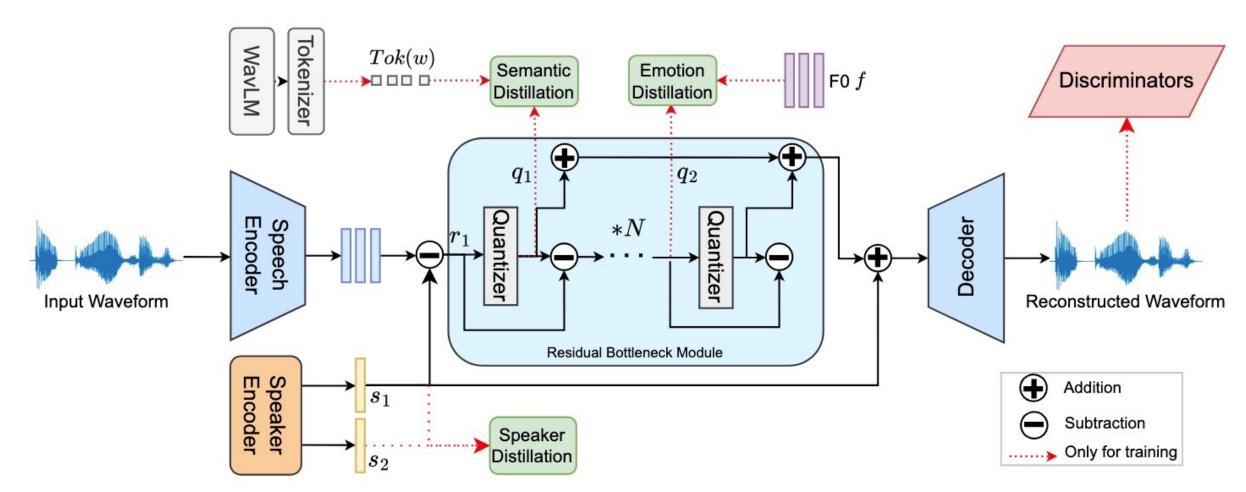
- Provide baseline systems, evaluation metrics and pipeline
- preserving the emotional state, a key paralinguistic attribute

Original Speaker: Today is a nice day (Happy)

Pseudo Speaker: Today is a nice day (Happy)

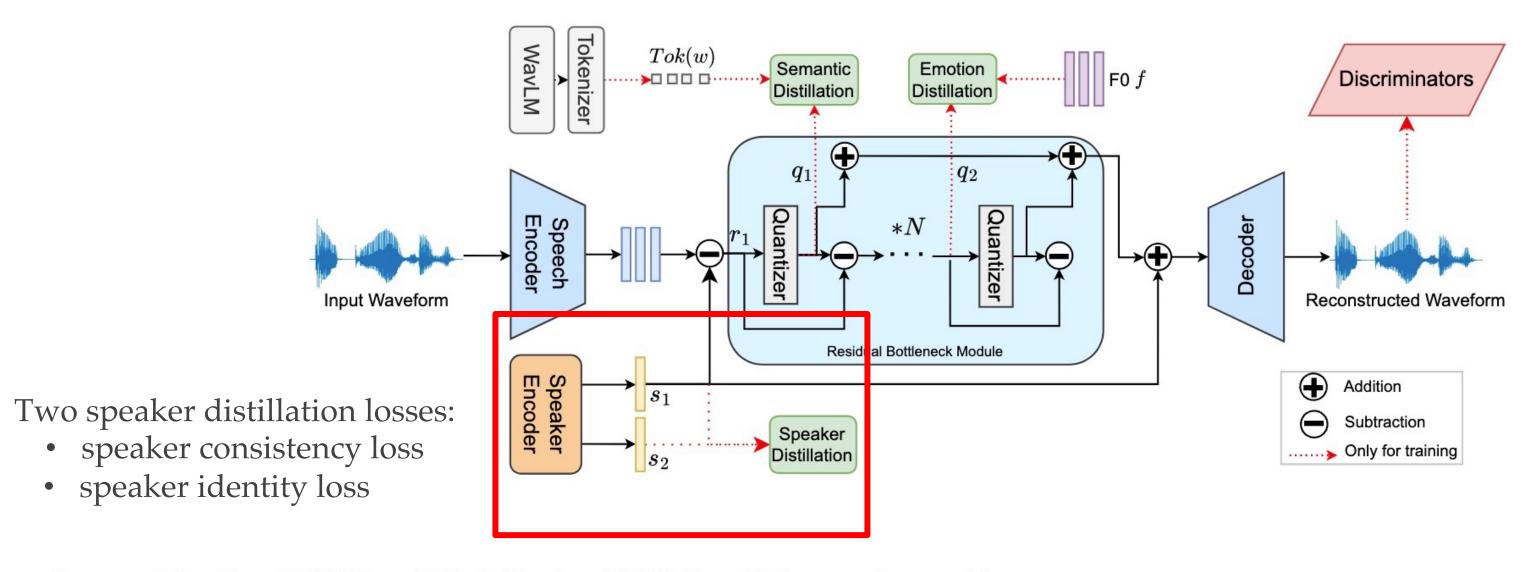
https://www.voiceprivacychallenge.org/

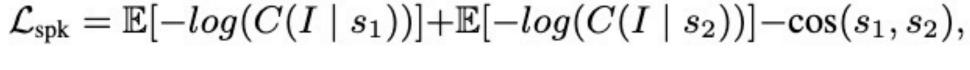
Our Proposed


A speaker anonymization system based on a disentangled neural codec

- We propose a serial disentanglement strategy to perform step-by-step disentanglement
 - From a global time-invariant representation (speaker identity)
 - To a temporal time-variant representation (linguistic content and fundamental frequency)
- We introduce three distillation method to disentangle each speech attribute:
 - Linguistic content, speaker identity and emotion state

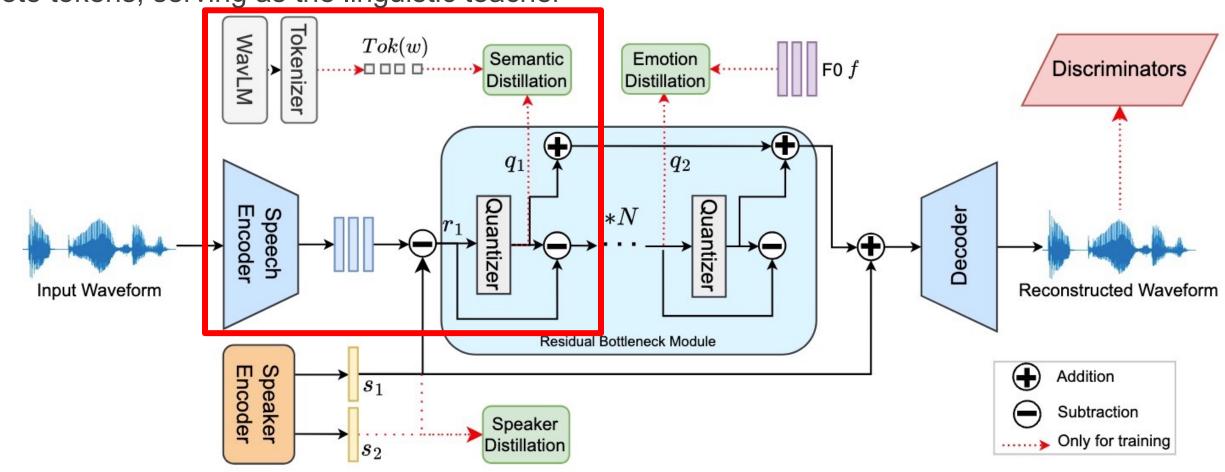
System Overview


- Auto-encoder architecture consist of:
 - Speech encoder: compress the speech samples into frame-level representations
 - Speaker encoder: extract global speaker representation
 - Residual bottleneck module: disentangle frame-level representation
 - Decoder: reconstruct the input speech waveform



Factor Distillation

Speaker distillation

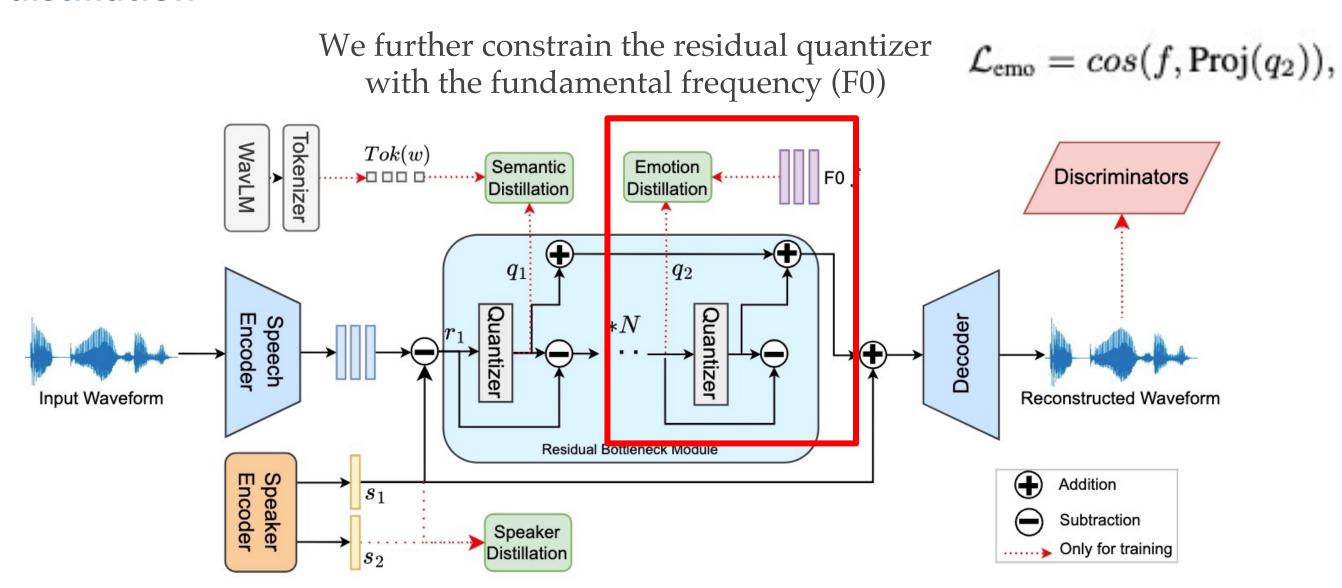


Factor Distillation

Linguistic distillation

We extract 6th layer's output from pre-trained WavLM model and employ a K-means cluster transfer the representation into discrete tokens, serving as the linguistic teacher

$$\mathcal{L}_{lin} = \mathbb{E}[-log(\text{Tok}(w) \mid q_1))],$$



Residual bottleneck module employed for hierarchical disentanglement

Factor Distillation

Emotion distillation

Training and Inference

Training objective

- Reconstruction loss: frequency domain, both L1 and L2
- Adversarial loss: same configuration with HiFi-GAN
- Distillation loss: speaker, linguistic, emotion

* Inference

- * Replace the original speaker identity extracted from the original speech with anonymized identity
- * Anonymized identity: weighted sum the averaged speaker identity and a randomly generated speaker identity

Experimental Results

- Our proposed system achieves 37.69% and 36.99% on dev and test datasets in condition 3, while the EER results for condition 4 are 42.45% and 40.46%
- Utility metrics outperform all baseline systems
 - WER for linguistic preservation
 - UAR for emotion preservation

	EER, % (†)						WER, % (↓)		UAR, % (↑)	
	LibriSpeech-dev			LibriSpeech-test			LibriSpeech-dev	LibriSpeech-test	IEMOCAP-DEV	IEMOCAP-TEST
	F	M	Avg	F	M	Avg	Librispeech-dev	Librispecen-test	IEMOCAF-DEV	IEMOCAF-TEST
Orig.	10.51	0.93	5.72	8.76	0.42	4.59	1.80	1.85	69.08	71.06
B1	10.94	7.45	9.20	7.47	4.68	6.07	3.07	2.91	42.71	42.78
B2	12.91	2.05	7.48	7.48	1.56	4.52	10.44	9.95	55.61	53.49
B3	28.43	22.04	25.24	27.92	26.72	27.32	4.29	4.35	38.09	37.57
B4	34.37	31.06	32.71	29.37	31.16	30.26	6.15	5.90	41.97	42.78
B5	35.82	32.92	34.37	33.95	34.73	34.34	4.73	4.37	38.08	38.17
B6	25.14	20.96	23.05	21.15	21.14	21.14	9.69	9.09	36.39	36.13
C3	44.18	31.20	37.69	37.96	36.03	36.99	2.56	2.66	65.98	64.48
C4	45.31	39.60	42.45	40.66	40.26	40.46	3.51	3.19	62.93	60.87

Conclusion

- We propose a codec based speaker anonymization system with serial disentanglement strategy
- We introduce three distillation method to disentangle the linguistic content,
 speaker identity and emotion state
- Experiments on VPC official evaluation pipeline demonstrate our proposed speaker anonymization system outperform all baseline systems

Jixun Yao (姚继珣)
Audio, Speech & Language Processing Group (ASLP@NPU)
www.npu-aslp.org
Email: yaojx@mail.nwpu.edu.cn

Thank You!

