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Abstract

In this work, we describe our submissions for the
Voice Privacy Challenge 2024. Rather than propos-
ing a novel speech anonymization system, we enhance
the provided baselines to meet all required condi-
tions and improve evaluated metrics. Specifically, we
implement emotion embedding and experiment with
WavLM and ECAPA2 speaker embedders for the B3
baseline. Additionally, we compare different speaker
and prosody anonymization techniques. Furthermore,
we introduce Mean Reversion F0 for B5, which helps
to enhance privacy without a loss in utility. Finally, we
explore disentanglement models, namely ß-VAE and
NaturalSpeech3 FACodec.
Index Terms: Voice Privacy Challenge 2024, Speaker
Anonymization, Emotion Embedding, Voice Conver-
sion

1. Introduction
Voice Privacy Challenge 2024 [1] introduces a new
metric to evaluate the ability to maintain the conveyed
emotion of the original source speaker.

Given the baselines provided by organizers, we
test various techniques and methods aimed at improv-
ing the evaluated metrics. Specifically, we create sub-
missions for all four of EER conditions by using a
modified version of B3 [2] and B5 [3] systems, with
the former responsible for conditions with EER lower
than 30% and the latter for those with EER from
30% and above. Additionally, we experiment with
disentanglement-based models such as ß-VAE [4] and
NaturalSpeech3 FACodec [5].

The rest of the paper is constructed as follows:
Section 2 summarizes the two baselines that we used
for our submissions, Section 3 introduces all the mod-
ifications and proposed techniques used in our experi-
ments, Section 4 provides the detailed results and the
systems that we submitted for evaluation, Section 5
concludes our findings. Furthermore, we provide the
summary tables with a description of submitted sys-
tems in Appendix A.

2. Baseline Systems

In this section, we summarize two baseline systems,
B3 and B5, that we use in our experiments. A mod-
ified version of B3 is used to create submission for
the first condition (EER1) with EER between 10% and
20% and the second condition (EER2) with EER be-
tween 20% and 30%, while a modified version of B5
is used for the third condition (EER3) with EER be-
tween 30% and 40% and the last condition (EER4)
with EER larger than 40%. The details about all pro-
posed changes are laid out in Section 3.

2.1. B3

The baseline system B3 uses a Wasserstein gener-
ative adversarial network with Quadratic Transport
Cost (WGAN-QC) [6] to generate artificial pseudo-
speaker embeddings, anonymizing the speaker’s iden-
tity through four main steps:

1. Phonetic Transcriptions Extraction: Phonetic
transcriptions are extracted using an end-to-end au-
tomatic speech recognition (ASR) model with a hy-
brid CTC-attention architecture.

2. Speaker Embeddings Speaker embeddings are ob-
tained using an adapted Global Style Tokens (GST)
model [7].

3. Anonymization: The original speaker embedding
is swapped with an artificial one generated by a
WGAN. If the cosine distance between the artifi-
cial and original embeddings is less than 0.3, the re-
placement is considered successful. Otherwise, the
process is repeated up to 30 times. Additionally, the
pitch and energy values for each phoneme are ad-
justed using random values between 0.6 and 1.4.

4. Speech Synthesis: The anonymized speaker em-
bedding, adjusted prosody, and original phonetic
transcription are used to create anonymized speech
using the FastSpeech2 model and HiFi-GAN [8]
vocoder, as implemented in IMS-Toucan [9].
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Figure 1: Schematic diagram of Modified system B3.

2.2. B5

The B5 system used a HiFi-GAN model conditioned
on fundamental frequency and a linguistic representa-
tion of the source utterance along with speaker embed-
ding of a designated speaker to generate anonymized
speech.

1. Fundamental Frequency (F0): B5 uses a pytorch
implementation of YAAPT Pitch Tracking [10] to
extract F0 from speech. In authors’ of B5 thesis [3],
the original authors of B5 suggest several comple-
mentary normalization or transformations to be ap-
plied to F0, none of which are included in B5.

2. Linguistic Representation: B5 uses the output of
a vector quantization bottleneck layer (VQ-BN) put
the top of the acoustic model (AM) of an automatic
speech recognition (ASR) trained to classify left-
biphone as the linguistic representation.

3. Speaker Embedding: a designed speaker embed-
ding of a speaker included in the training stage is
used to change the voice of anonymized speech. We
randomly pick a speaker embedding to anonymize
each utterance similar to the B5 baseline provided
by the organizer.

We use the same pre-trained B5 model provided by or-
ganizers without doing any further training or tuning.
Instead, we introduce a new method of transformation
that can be applied to F0 in the inference stage, which
is discussed in Section 3.3

3. Our Methods
In this subsection, we elaborate on the details of pro-
posed modifications to the baseline systems.

3.1. Modifications of B3

We experimented with the following main modifica-
tions for this system is as follows:

• Emotion embeddings are implemented as an addi-
tional input to the FastSpeech2 model.

• The Global Style Tokens (GST) model is replaced
by different speaker embedders such as WavLM
[11] and ECAPA2 [12].

• Some experiments related to speaker selection strat-
egy for anonymization and prosody manipulation.

We start off with emotion embeddings. For ex-
tracting emotion-based embeddings, we employ a fine-
tuned Wav2Vec2 Large Robust model [13] on MSP-
Podcast [14]. Notably, the model is pruned from 24
to 12 transformers, and the CNN component is frozen
prior to fine-tuning. Embeddings are extracted from
the hidden layer, which has 1024-dimensional vec-
tors as output. We employ it to FastSpeech2 in the
same way as speaker embeddings in [15] by adding
one more linear projection and concatenating it with
an output from Conformer [16].

In addition to the GST model, we implement dif-
ferent speaker embedding models such as ECAPA2
and WavLM with 128 and 512 embedding sizes corre-
spondingly. As both these speaker embedders work on
audios instead of spectrograms, we add a pre-trained
HiFi-GAN to the setup for the second phase of Fast-
Speech2 training in order to generate audio and extract
embeddings for cycle consistency loss. In contrast to
the GST model, ECAPA2 and WavLM speaker em-
bedders are frozen during FastSpeech2 training. Simi-
larly, the HiFi-GAN is also frozen.

Furthermore, we explore various anonymization
strategies, such as random speaker selection, which
involves replacing the source speaker embedding for
each utterance with a randomly selected embedding
from a pool of embeddings. Additionally, we eval-
uated the importance of the usage of cross-gender
for anonymization for the modified model. In cross-
gender anonymization technique, we select a target
speaker from the pool that has the opposite gender



with respect to the source speaker. Finally, we examine
how different powers of prosody anonymization affect
privacy-based and utility-based metrics. To be more
specific, we experiment with different offsets for pitch
and energy multipliers.

The training process is the same as for the B3
baseline system. We retrain each part of the system
except HiFi-GAN and ASR model.

3.2. Disentanglement-based models

Next, we explore disentanglement-based models,
which might be useful for removing speaker-related
information from other components (such as prosody,
content, and acoustic information). We compare two
models: ß-VAE [4] and NaturalSpeech3 FACodec [5].
Anonymization for these models is implemented by
passing anonymized speaker embedding instead of
source embedding and then performing voice conver-
sion.

3.3. Mean Reversion F0 for the B5 system

For conditions EER3 and EER4, we base our submis-
sions on the B5 [3] system provided by the organizer.
Champion proposes a voice anonymization model us-
ing a HiFi-GAN vocoder which takes in the F0 and
the linguistic representation of a source utterance and
then turns it into the speech with the voice of a tar-
get speaker. In his thesis, the author explores different
transformation techniques that can be applied to F0 in-
cluding linear transformation, Additive White Gaus-
sian Noise, and quantization. In this work, we propose
a new type of transformation that uses the original and
the n-frame moving average F0 (F0), with n=32 in our
calculation:

F̂0 = (1− α)F0 + αF0 (1)

with α = 0, we get the original F0, and with α = 1,
we get the moving average F0. For any α between
0 and 1, we obtain a mean reversion F0 which is a
value weighted toward the mean. The motivation for
this method is that we can reduce the dynamic range
of F0, which is one characteristic of voice, and move
it to a more neutral value. Moreover, the calculation is
based on a short window instead of the entire utterance
like the linear transformation method. Note that, we
remove unvoiced frames when calculating the moving
average F0.

We then apply an Additive White Gaussian Noise
on top of mean reversion F0 to push up the EER. Fig-
ure 2 shows an example of the mean reversion F0 with
and without additive noise.

4. Experiments
In this section, we provide experimental results for the
system modifications explained in Section 3. To be-
gin, we present the results for different modifications
of system B3. The modified system B3 is illustrated in
Figure 1.

4.1. Modified B3

From the results in 1, it can be observed that emo-
tion embeddings help to improve Emotion Recogni-
tion performance while maintaining ASR performance
at the same level. However, there is some degrada-
tion in privacy, which might be due to speaker identity
leakage in the emotion embeddings. In addition, we
provide experimental results for this system without
prosody anonymization to check how modifications of
prosody affect SER performance. As shown in the re-
sults, removing prosody modifications improves SER
and ASR but also reduces privacy, making this system
suitable for condition with a minimum EER1 = 10%.

Table 2 shows a comparison between WGAN and
Random-Speaker anonymization techniques. There is
almost no difference in the privacy and utility metrics
for these methods, so we chose to stick with Random-
Speaker as it requires no training.

Table 2: Comparison between WGAN anonymiza-
tion strategy trained on LibriTTS-clean-100 and Ran-
dom Speaker (Rnd-Spk) selection from LibriTTS-train-
clean-100 per each source utterance.

Anon EER UAR WER
Type dev test dev test dev test

WGAN 25.20 27.78 38.40 37.70 4.30 4.40
Rnd-Spk 25.76 28.42 37.97 37.39 4.33 4.33

Next, Table 3 compares different ranges for mul-
tipliers involved in prosody anonymization. The re-
sults indicate that fewer prosody modifications result
in worse privacy but better utility. This finding is use-
ful for VPC2024 as it allows us to find a better trade-
off between privacy and utility for specific EER con-
ditions.

Table 3: Comparison between difference range for F0
and energy multipliers. The bottom row corresponds
to the system without prosody manipulation.

Multiplier EER UAR WER
Range dev test dev test dev test

[0.6, 1.4] 25.76 28.42 37.97 37.39 4.33 4.33
[0.7, 1.3] 23.93 25.62 37.49 37.59 4.07 4.05
[0.8, 1.2] 22.70 25.92 38.01 37.96 3.89 3.91
[0.9, 1.1] 19.88 22.62 39.03 37.17 3.80 3.77

– 19.47 21.82 38.91 38.11 3.70 3.75
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Figure 2: Examples of Mean Reversion F0 with and without additive noise

Table 1: Comparison between systems with and without emotion embedding with different speaker embedder
and prosody anonymization. + in speaker anonymization column corresponds to Random-Speaker selection from
LibriTTS-clean-100 for each source utterance. + in prosody anonymization column corresponds to the systems with
prosody multipliers from [0.6, 1.4] range.

Speaker Speaker Prosody Emotion EER UAR WER
Anonymization Embedder Anonymization Embedding dev test dev test dev test

– – – – 5.72 4.59 69.08 71.06 1.80 1.85
+ GST + – 25.76 28.42 37.97 37.39 4.33 4.33
+ GST + + 22.59 24.09 42.52 41.74 4.39 4.40
+ GST – + 16.88 17.45 42.76 43.21 3.81 3.83
+ WavLM – + 17.97 16.64 43.84 45.67 4.54 4.69
+ ECAPA2 – + 19.48 22.55 42.53 42.37 4.83 4.80

Table 4: Comparison between ß-VAE and NS3 disen-
tanglement models.

Model EER UAR WER
dev test dev test dev test

Original 5.72 4.59 69.08 71.06 1.80 1.85

ß-VAE 10.71 10.49 30.38 31.28 67.72 65.5
NS3 9.29 8.78 51.64 52.89 2.97 2.77

4.2. Disentanglement-based models

The comparison results between ß-VAE and Natural-
Speech3 FACodec are shown in Table 4. It can be
seen that ß-VAE performs poorly in utility-based tasks,
likely because of the fact that content representations
are not rich enough.

As one might notice from the results in Table 4,
NaturalSpeech3 has decent utility results. Therefore,

we decided to employ anonymization techniques to
improve privacy protection for NS3, aiming to meet
a condition with minimum EER1 = 10%. We ex-
perimented with the following tricks: Additive White
Gaussian Noise (AWGN) to Speaker Embedding and
conversing a source speaker to a target speaker of the
opposite gender (cross-gender). The results are shown
in Table 5. As we can see, cross-gender conversion
helps to improve privacy and ASR performance on the
corresponding test sets. Interestingly, it also improves
SER performance on both development and test sets.
As expected, AWGN enhances privacy at the cost of
utility.

Our results underscore the need for a balance be-
tween privacy and utility, as methods like AWGN and
prosody anonymization can strengthen privacy but also
impact system performance. This balance is essential
for creating anonymization techniques that are both se-



Table 5: Comparison between NaturalSpeech3 FA-
Codec systems with different power of AWGN applied
to speaker embedding. The speaker anonymization
module consists of averaging 100 embeddings ran-
domly selected from a pool of 200 farthest embeddings
(LibriTTS-train-clean-100) from source utterance by
cosine scoring.

scale, Cross EER UAR WER
10e−3 Gender dev test dev test dev test

– – 9.29 8.78 51.64 52.89 2.97 2.77
75 – 12.25 9.14 48.00 48.09 4.66 4.63
75 + 12.09 10.46 49.20 49.12 4.97 4.60
78 + 12.42 10.24 49.10 49.39 5.44 5.07
80 – 12.63 9.42 47.33 48.35 5.37 5.40
80 + 13.66 10.10 48.82 48.95 5.69 5.37
90 – 12.41 10.45 47.61 47.10 7.04 6.45

Table 6: Evaluation results of B5 using Mean Rever-
sion F0 with different values of α in inference stage

α EER UAR WER
dev test dev test dev test

0.00 31.64 31.36 39.18 38.24 4.79 4.44
0.25 32.13 32.03 39.61 38.38 4.74 4.54
0.50 33.48 34.08 38.60 37.34 4.62 4.54
0.75 38.56 37.48 38.06 37.60 4.70 4.47
1.00 37.91 37.93 38.50 38.78 4.79 4.43

cure and functional.

4.3. Modified B5

Table 7: Evaluation results of B5 using Mean Rever-
sion F0 (α = 0.75) and AWGN with different magni-
tude of noise in inference stage

dB EER UAR WER
dev test dev test dev test

0 38.56 37.48 38.06 37.60 4.70 4.47
5 39.58 40.00 38.91 37.12 4.67 4.49

10 42.46 43.15 39.41 38.47 4.63 4.40
15 42.97 40.36 38.50 37.49 4.66 4.50
30 41.43 39.62 38.41 37.88 4.77 4.64

Table 6 lists the results of the Mean Reversion F0
method discussed in Section 3.3 given different α val-
ues. We can see a general trend that EER increases
when α is increased while UAR and WER fluctuate
but not very significantly. We submitted the sample
generated with α = 0.75 for the condition EER3.

For the last condition EER4, we add a 10-db
AWGN to the mean reversion F0 with α = 0.75 and
manage to obtain an EER above 40%. The result can
be found in Table 8.

We note that the EER results of these systems were
highly volatile during our experiments, often produc-

ing different results even if we ran with the same con-
figuration. It seems that convergence of an attacker
ASV model depends on factors such as the machine,
GPU, randomly picked speaker embedding, and other
random parameters. The systems that we selected for
submissions were based on the results available at that
time and represented our methods of Mean Reversion
F0 and AWGN.

4.4. Submitted systems

In this subsection, we provide a summary of all sub-
mitted systems. Table 8 shows privacy and utility re-
sults for each of the conditions.

Table 8: Results summary for all submitted systems
grouped by achieved privacy conditions.

Condition System EER UAR WER
ID dev test dev test dev test

EER1 1a 12.09 10.46 49.20 49.12 4.97 4.60
1b 16.88 17.45 42.76 43.21 3.81 3.83

EER2 2a 21.47 24.13 44.67 42.78 4.21 4.29
2b 20.07 22.85 39.18 37.67 3.61 3.68

EER3 3 38.56 37.48 38.06 37.60 4.70 4.47
EER4 4 42.46 43.15 39.41 38.47 4.63 4.40

Additionally, we prepared the tables in the Ap-
pendix A with a summary of architecture, input, output
values, and training data for components in submitted
systems.

5. Conclusion
In this system description, we modified the baseline
systems (B3 and B5) for the Voice Privacy Chal-
lenge 2024 to enhance speaker anonymization while
preserving emotional and content features. Specifi-
cally, we integrated emotion embeddings and differ-
ent speaker embedders such as WavLM and ECAPA2
into system B3. In addition, we explored random-
speaker and cross-gender anonymizations and differ-
ent setups of prosody manipulation. For B5, we
introduced Mean Reversion method and AWGN for
prosody which allowed us to enhance privacy while
maintaining utility. Finally, we experimented with
disentanglement-based approaches such as ß-VAE and
NaturalSpeech3. An additional analysis on Natural-
Speech3 showed promising results for the Voice Pri-
vacy problem.
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Table 9: Description of Systems 1a.

# Module Description Output features Data
1 Encoder [17] 4 Downsampling Convolution-based Layers

with Snake activation function
Input: speech waveform

Output
vector256

Librilight train

2 Prosody
extractor Factorized Vector Quantization with 1 quantizer, codebook size:

1024
Prosody
vector256

Librilight train

3 Content
extractor Factorized Vector Quantization with 2 quantizers, codebook

size: 1024
Content
vector256

Librilight train

4
Speaker

embedding
extractor

Several Conformer blocks Speaker
embedding256

Librilight train

5
Speaker

anonymization
module

Averaged 100 embeddings randomly selected from a pool of
200 farthest embeddings from source by cosine scoring
AWGN with scale= 0.075
Cross-gender

Anonymized
speaker
embedding256

LibriTTS:
train-clean-100

6 Decoder [17] Upsampling Convolution-based Layers
with Snake activation function

speech
waveform

Librilight train



Table 10: Description of Systems 1b, 2a, 2b.

# Module Description Output features Data

1 Prosody
extractor Phone aligner: 6-layer CNN + LSTM with CTC loss

F0 estimation using Praat
F0, energy, durations normalized by each vector’s mean

F01, energy1

phone
durations1

LibriTTS:
train-clean-100

2 ASR End-to-end with hybrid CTC-attention
Input: log mel Fbank80

Encoder: Branchformer
Decoder: Transformer
CTC and attention criteria

phonetic tran-
script with
pauses and
punctuation

LibriTTS:
train-clean-100
train-other-500

3
Speaker

embedding
extractor

GST, trained jointly with SS model
Input: mel spectrogram80

6 hidden layers + 4-head attention

GST speaker
embedding128

LibriTTS:
train-clean-100

4
Emotion

embedding
extractor

1b, 2a: Dimensional Speech Emotion Recognition Model
based on Wav2vec 2.0
Input: Wav2vec 2.0 Large features

emotion
embedding1024

MSP-Podcast
(v1.7)

2b: – – –

5
Prosody

modification
module

1b, 2b: – – –

2a: Value-wise multiplication of F0 and energy with random
values in [0.7, 1.3)

F01, energy1 LibriTTS:
train-clean-100

6
Speaker

anonymization
module

1b: Averaged 100 embeddings randomly selected from a pool
of 200 farthest embeddings from source by cosine scoring +
cross-gender
2a, 2b: Random Speaker selection per each source utterance +
cross-gender

Anonymized
speaker
embedding128

LibriTTS:
train-clean-100

7 SS model IMS Toucan implementation of FastSpeech2
Input: F01 + energy1 + phone durations1 + phonetic transcript
+ GST embeddings128 (1b, 2a: + emotion embeddings1024)
Training criterion defined in FastSpeech2

mel
spectrogram80

LibriTTS:
train-clean-100

8 Vocoder HiFi-GAN vocoder
Input: mel spectrogram80

Training criterion defined in HiFi-GAN

speech wave-
form

LibriTTS:
train-clean-100

Table 11: Description of Systems 3 and 4.

# Module Description Output features Data
1 F0 extractor F0 extracted with s pytorch implementation of YAAPT

3: Using Mean Reversion F0 (α = 0.75) in inference
4: Using Mean Reversion F0 (α = 0.75) and 10-db AWGN

F0 N/A

2 ASR AM with
VQ Acoustic Model trained to identify left bi-phones

and a VQ bottleneck layer
Linguistic
representation

VoxPopuli
Librispeech:
train-clean-100

3 Speaker
embedding One-hot vector represented speaker in training set Speaker

embedding
LibriTTS:
train-clean-100

4 Speech
Synthesis HiFi-GAN vocoder

Input: F0 + linguistic representation + speaker embedding
Speech
waveform

LibriTTS:
train-clean-100
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