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Abstract

Human speech conveys linguistic content, prosody,
and speaker-specific attributes. Our approach to speaker
anonymization employs an end-to-end network using a Vector
Quantization Variational Auto-Encoder (VQ-VAE) to separate
these components, explicitly targeting speaker information. We
condition the decoder with both speaker and prosody features
to enhance performance. This method allows us to precisely
modify characteristics key to speaker identity while preserv-
ing linguistic and emotional content. The findings indicate that
the proposed method yields superior results and effectively pre-
serves emotional information in all test sets, although privacy
enhancement still requires further improvement.
Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Proposed Method
Our approach leverages vector quantization alongside a vari-
ational auto-encoder to effectively separate speaker and con-
tent information. To enhance the model to focus on content,
we condition the decoder with not only the speaker information
(x-vector) but also with prosody features, including the funda-
mental frequency (F0) and the energy of the spectrum. Inte-
grating prosody features improves the network’s ability to pre-
serve emotional information during speech synthesis. The de-
tailed architecture of the proposed model is depicted in 1, and
the description of each module is provided in Table 2. While
the proposed network shares similarities with Baselines 5 and
6 of the challenge, our method uses the vector quantization in
conjunction with a variational auto-encoder, which has proven
more effective at disentangling content information [1, 2].

1.1. Content Module

The content module comprises an encoder module followed by
a vector quantization module. The encoder features two front-
end convolution blocks, each with a kernel size of 3, a stride
of 1, and 768 channels. This setup is followed by a downsam-
pling convolution block that employs a kernel size of 4 with a
stride of 2, which compresses the signal from 100Hz to 50Hz.
The sequence continues with two additional residual convolu-
tion blocks that mirror the configuration of the front-end blocks
and concludes with four residual blocks, as depicted in Figure
1. The encoder processes an 80 mel-spectrogram as input and
generates a 256-dimensional output representation. This net-
work bears similarities to the approach described in [1].

Lastly, the vector quantization module features a large
codebook containing 1,024 codes, each with 256 dimensions.
This design enables the network to learn more complex repre-
sentations from the data.

1.2. Prosody Module

To enhance the ability to capture the subtle nuances of intona-
tion and emotional expression in speech, we propose incorpo-
rating two pivotal parameters: the fundamental frequency (F0),
and the energy of the spectrum. These parameters are essential
in enriching the prosody information supplied to the decoder,
significantly improving the accuracy of speech reconstruction
and elevating the efficacy of emotion detection in our model.
The fundamental frequency was extracted from the audio wave-
form using pYAAPT 1, which is given by the current challenge
guidelines.

In addition, the f0 and the spectral energy were normal-
ized according to the procedures outlined in Baseline 3 [3]. As
depicted in Figure 1, the normalized f0 and energy are sub-
sequently fed into a Bi-directional Gated Recurrent Unit (Bi-
GRU) network with a hidden state dimensionality of 128, which
allows for a robust temporal analysis of the prosody informa-
tion.

1.3. Anonymization Module

Our speaker anonymization process closely follows that of
Baseline 1. However, the ECAPA-TDNN [4] was used to com-
pute the x-vector, which is known for its effectiveness in captur-
ing robust speaker characteristics. The extracted x-vector was
replaced with a pseudo-x-vector computed by averaging the x-
vectors that are most distant from the original, selected from a
specially constructed speaker pool. This pool was created us-
ing the mean x-vector computed for each speaker during train-
ing, ensuring a comprehensive representation of diverse speaker
traits.

We are also investigating the effects of changing the funda-
mental frequency (F0) during the anonymization process. Mod-
ifying the F0 can prevent the disclosure of identifiable speaker
information. Firstly, we suggest randomly adjusting the F0 by
20%, which is a method similar to the one used in Baseline 3
[3]. Secondly, we propose normalizing the F0 using the mean
of the most dissimilar speakers from the speaker pool.

1.4. Decoder Module

The HiFiGAN vocoder [5] was used as the decoder to synthe-
size speech. The embedding from the content module was up-
sampled back to 100Hz, concatenated with the embedding from
the prosody module, and fed into the decoder along with the
pseudo x-vector. In this setup, the prosody embedding provides
nuanced, time-varying information as local conditioning, while
the pseudo x-vector offers overarching speaker characteristics

1pYAAPT:http://bjbschmitt.github.io/AMFM_
decompy/pYAAPT.html



Figure 1: The proposed architecture: The top figure shows the encoder of the content module, while the bottom figure depicts the
anonymization system, including the content, prosody, anonymization, and decoder modules. The system takes as input an 80 mel-
spectrogram, F0, energy, and x-vector. The x-vector, modified with or without normalized F0, is fed to the network to produce
anonymized speech.

as global conditioning

The upsampling procedure employs factors of 10, 4, and
4, totaling 160, to accommodate a sampling rate of 16kHz.
Each stage employs kernels sized 20, 8, and 8, respectively.
This structured upsampling effectively reconstructs the wave-
form, guaranteeing that the synthesized speech corresponds to
the original sample rate. This multi-stage technique fills the gap
between the low-dimensional embedded space and the high-
resolution audio required for speech synthesis.

2. Experiment

2.1. Datasets

All datasets used in the experiments adhered to the guidelines
defined by the challenge. Our training data consists of subsets
from LibriSpeech [6] and additional data from CREMA-D [7]
to enhance the model’s ability to recognize and synthesize emo-
tions. Table 1 provides detailed statistical information on the
composition and distribution of the training data. The devel-
opment and test sets included subsets of both LibriSpeech and
IEMOCAP [8]. These datasets were specifically chosen to eval-
uate performance of the model across multiple tasks, including
automatic speaker verification, speech recognition, and speaker
emotion recognition.

Table 1: Statistical information about training datasets.

Corpus Dataset Hour Speaker

LibriSpeech train-clean-100 100.6 251
train-other-500 496.7 1,166

CREMA-D all data 5.2 91

2.2. Evaluation Metrics

This challenge evaluated the anonymization system using three
objective metrics. The Equal Error Rate (EER) is the privacy
metric, and two utility metrics, Word Error Rate (WER) for Au-
tomatic Speech Recognition (ASR) and Unweighted Average
Recall (UAR) for Speech Emotion Recognition (SER), were
used. The EER and WER were used to evaluate the system
on Librispeech, while UAR was used on IEMOCAP test sets.

2.3. Experimental Setup

Two types of discriminators were used during the training pro-
cess: the Multi-Period Discriminator (MPD) and the Multi-
Scale Discriminator (MSD). Our MPD and MSD closely follow
the implementation described in [9]. The MPD was specifically
simplified by targeting periods with factors of 3, 5, and 7. This
modification was aimed at reducing the complexity of the dis-
criminator, while ensuring that the model remains robust yet
computationally feasible, aligning with the objectives of pro-
ducing realistic and natural-sounding synthetic speech.

All the input features, including the 80 mel-spectrograms,
fundamental frequency (F0), and energy, were computed us-
ing a window length of 25 milliseconds and a hop length of
10 milliseconds. We used an FFT size of 1024 to generate the
spectrogram. The training was conducted over 150 epochs with
a batch size of 128. We utilized the AdamW optimizer with
β1 = 0.8, β2 = 0.99. The learning rate started at an initial
value of 2 × 10−4 and was gradually decreased by a factor of
0.999 following each epoch. This configuration is consistent
with the approach used in HiFiGAN [5].

3. Results and Conclusion
The performance of our three systems is outlined in Tables 3, 4
and 5. Our system v1 features no F0 normalization, system v2
applies a random 20% scaling to F0, and system v3 normalize



F0 using the mean values obtained from the most distant speak-
ers within speaker pool.

Our systems achieved a lower EER than most baselines.
This indicates a somewhat reduced effectiveness in terms of
privacy, which may derive from the traditional method used to
compute the pseudo-x-vector. However, system v2 is the best
and is greater than the Orig. configuration, Baselines 1 and 2.
Additionally, it recorded a significant UAR in speaker emotion
recognition across test sets, ranking second only to B4. This
emphasizes the method’s ability to retain considerable informa-
tion pertinent to emotional characteristics.

Furthermore, systems v2 yielded superior results in ASR
than B2 and B6. The performance enhancements were particu-
larly notable for system v1, which demonstrated a lower WER
than B4. This suggests that although scaling the F0 by 20%
might lead to some loss of content information, the overall emo-
tional expression is primarily maintained, indicating robustness
in capturing emotional nuances.

Despite its lower performance in SER compared to system
v1 and v2, system v3 outperformed many baselines. Neverthe-
less, it registered the highest WER across all test sets, indicat-
ing that normalizing F0 based on the mean values of the most
distant speakers adversely impact crucial content information
within the speech. This normalization process distorts essential
speech characteristics, compromising the speech output’s clar-
ity and intelligibility.

In summary, these results suggest that while using vector
quantization to separate content from speaker identity leads to
some information loss, it does not drastically affect voice con-
version effectiveness. More importantly, the proposed method
has proven highly effective in SER, mainly system v2, com-
pared to most baselines, validating the benefits of integrating
discrete representations with prosody information. This integra-
tion enhances the model’s capability to recognize and replicate
emotional states, making it a valuable approach for applications
where emotional accuracy is critical.
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Table 2: Module Descriptions and Outputs: The model was trained end-to-end using the proposed training data.

# Module Description Output features

1 ECAPA-TDNN Pretrained model
Input: Waveform (16KHz) X-vector192

2 Encoder
Input: 80 mel-spectrogram
5 convolutions blocks
4 residual blocks

Embedding256

3 VQ-VAE
Vector Quantizer
Input: Embedding256

Codebook: 1024 codes, each with 256 dimensions
Codes256

4 Bi-GRU
Prosody Encoder
Input: F0 + Energy
Hidden: 128

Prosody256

5 Speaker Pool X-vector Pool
The mean x-vector of the speakers from the training set Pseudo-x-vector192

6 HiFi-GAN Vocoder Input: Codes256 + Prosody256 (local conditioning)
Global conditioning: Pseudo-x-vector192 Waveform (16KHz)

Table 3: The Equal Error Rates (EER, %) achieved by the baselines and original (Orig.) data vs. the proposed method.

LibriSpeech-dev LibriSpeech-test

Models Female Male Average Female Male Average

Orig. 10.51 00.93 05.72 08.76 00.42 04.59
B1 10.94 07.45 09.20 07.47 04.68 06.07
B2 12.91 02.05 07.48 07.48 01.56 04.52
B3 28.43 22.04 25.24 27.92 26.72 27.32
B4 34.37 31.06 32.71 29.37 31.16 30.26
B5 35.82 32.92 34.37 33.95 34.73 34.34
B6 25.14 20.96 23.05 21.15 21.14 21.14
Ours v1 16.47 02.79 09.63 08.76 02.67 05.72
Ours v2 17.91 02.32 10.11 11.31 02.67 06.99
Ours v3 14.05 03.09 08.57 06.38 02.00 04.19

Table 4: Word Error Rates (WER, %) achieved by the baselines
and original (Orig.) data vs. the proposed method.

Models LibriSpeech-dev LibriSpeech-test

Orig. 01.80 01.85
B1 03.07 02.91
B2 10.44 09.95
B3 04.29 04.35
B4 06.15 05.90
B5 04.73 04.37
B6 09.69 09.09
Ours v1 06.13 05.27
Ours v2 06.59 05.39
Ours v3 13.65 11.04

Table 5: Unweighted average recall (UAR, %) achieved by the
baselines and original (Orig.) data vs. the proposed method.

Models IEMOCAP-dev IEMOCAP-test

Orig. 69.08 71.06
B1 42.71 42.78
B2 55.61 53.49
B3 38.09 37.57
B4 41.97 42.78
B5 38.08 38.17
B6 36.39 36.13
Ours v1 45.45 44.23
Ours v2 45.56 44.85
Ours v3 42.28 38.06
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