# Emotion-Enhanced SpeakerAnonymisation Using the FreeVC Framework



Yuqi Li—Fudan University& Qifu Techonology Yuanzhong Zheng—Qifu Techonology Jingyi Fang—Qifu Techonology Jinming Chen—Qifu Techonology

# CONTENTS











# BACKGROUND

#### Definition

Modifying vocal attributes to prevent speaker identification while maintaining speech intelligibility and naturalness.

#### Importance

Ensures privacy and data security across various digital platforms.

#### Applications

# Voice Anonymization

Applications

Applications

•Mobile Health: Secure storage and querying of encrypted voice data in healthcare systems.

•Journalistic Protection: Anonymization in sensitive communication scenarios to protect source identities.

•Consumer Technology: Enhancing security in voice-enabled IoT devices, preventing eavesdropping and data exploitation.



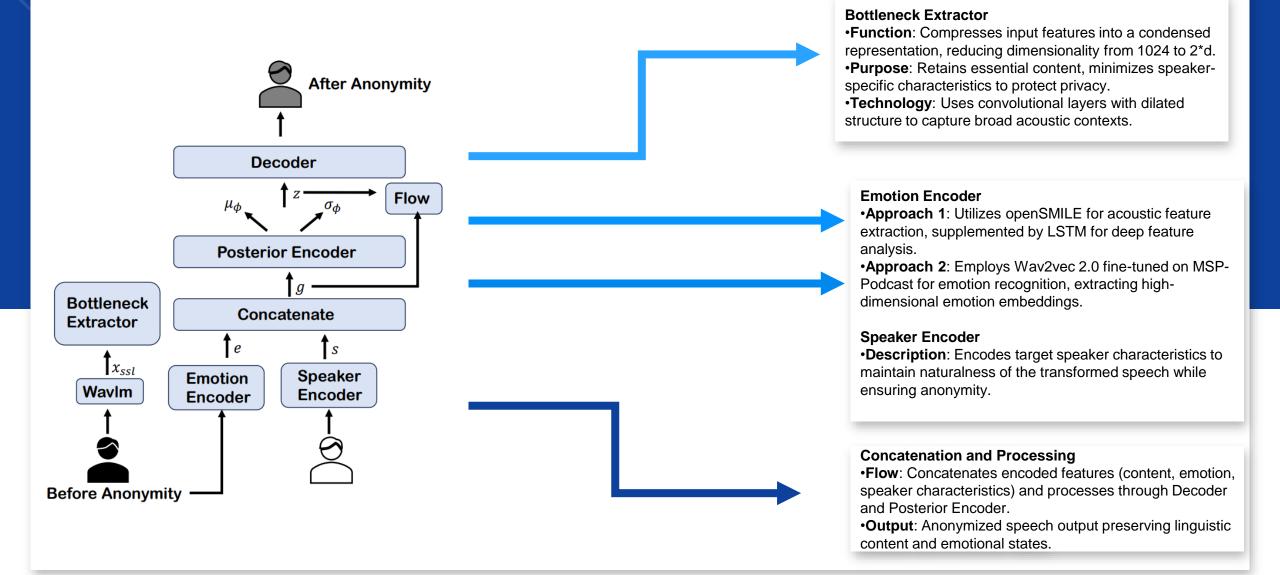
Challenges

Innovative

Approaches

#### Trade-offs

Balancing between effective anonymization and the naturalness and intelligibility of speech.


#### **Technological Demands**

Evolving speaker recognition technologies necessitate advanced anonymization techniques.

#### VoicePrivacy Challenge

In response to the call of VPC, a number of good methods that combine innovation and practicality have emerged

### **PROPOSED METHOD**







#### VCTK

110 speakers, multiple accents, used for phonetic diversity in voice conversion models.

#### RAVDESS

Audio and video from 24 actors, emotions like happiness and sadness, used for emotion recognition enhancement.

#### LibriSpeech

1,000 hours of diverse American English, crucial for ASR systems benchmarking.

#### **IEMOCAP**

12 hours of audiovisual data, capturing varied emotions, pivotal for emotion detection in HCI.

# RESULT

| Dataset & Metrics           | Gender      | Orig. | <b>B1</b> | B2    | B3    | <b>B4</b> | B5    | <b>B6</b> | EESA(Wv) | EESA(oS) |
|-----------------------------|-------------|-------|-----------|-------|-------|-----------|-------|-----------|----------|----------|
| LibriSpeech-dev (EER, %) ↑  | female      | 10.51 | 10.94     | 12.91 | 28.43 | 34.37     | 35.82 | 25.14     | 38.92    | 38.49    |
|                             | male        | 0.93  | 7.45      | 2.05  | 22.04 | 31.06     | 32.92 | 20.96     | 36.65    | 38.20    |
|                             | Average dev | 5.72  | 9.2       | 7.48  | 25.24 | 32.71     | 34.37 | 23.05     | 37.79    | 38.35    |
| LibriSpeech-test (EER, %) ↑ | female      | 8.76  | 7.47      | 7.48  | 27.92 | 29.37     | 33.95 | 21.15     | 37.96    | 38.85    |
|                             | male        | 0.42  | 4.68      | 1.56  | 26.72 | 31.16     | 34.73 | 21.14     | 35.64    | 35.19    |
|                             | Average dev | 4.59  | 6.07      | 4.52  | 27.32 | 30.26     | 34.34 | 21.14     | 36.23    | 37.02    |
| LibriSpeech-dev (WER, %) ↓  | -           | 1.8   | 3.07      | 10.44 | 4.29  | 6.15      | 4.73  | 9.69      | 4.45     | 4.79     |
| LibriSpeech-test (WER, %) ↓ | -           | 1.85  | 2.91      | 9.95  | 4.35  | 5.90      | 4.37  | 9.09      | 4.38     | 4.34     |
| IEMOCAP-dev (UAR, %) ↑      | -           | 69.08 | 42.71     | 55.61 | 38.09 | 41.97     | 38.08 | 36.39     | 45.09    | 43.52    |
| IEMOCAP-test (UAR, %) ↑     | -           | 71.06 | 42.78     | 53.49 | 37.57 | 42.78     | 38.17 | 36.13     | 42.74    | 37.37    |

## FEEDBACK

- 1. Due to network issues in China, it is not very convenient to directly access Google. Can you add some other ways to upload data?
- 2. The amount of data to be uploaded is large, and it is easy to fail to upload within the specified time. Can it be optimized?
- 3. The bit rate of the submitted audio needs to be limited, which does not seem to be stated in the requirements
- 4. Thank you very much for your patient responses and timely problem solving during the competition

