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Abstract
This paper details our innovative contributions to the VoicePri-
vacy Challenge 2024, focusing on the development and compar-
ative evaluation of three distinct voice anonymization methods
designed to enhance privacy while preserving the usability of
speech data. Method 1 applies a novel signal post-processing
technique that modifies the spectral properties of voice record-
ings to mask identifiable features. Method 2 utilizes an ad-
vanced machine learning algorithm to generate synthetic speech
that retains the linguistic content but lacks individual-specific
characteristics. Method 3 combines elements of acoustic trans-
formation and artificial intelligence to obscure speaker iden-
tity effectively. Our experimental findings indicate that each
method significantly enhances anonymization while preserving
speech recognition accuracy and emotional expressiveness.
Index Terms: speech recognition, speaker anonymization,
voice synthesis

1. Introduction
The increasing use of voice data in digital applications poses
significant privacy risks, prompting the need for effective
anonymization techniques. The VoicePrivacy Challenge has
emerged as a pivotal initiative, promoting the development of
methods that ensure the anonymity of voice data without com-
promising its utility for applications such as speech recognition
and personal assistants. designed to improve voice data pri-
vacy while complying with strict regulatory standards such as
the European General Data Protection Regulation (GDPR) and
the Canadian Consumer Privacy Protection Act (CPPA).

Our research contributes to the VoicePrivacy Challenge
by implementing three innovative methods tailored to voice
anonymization. The first method utilizes adaptive signal pro-
cessing to alter voice data’s spectral characteristics, thus mask-
ing potential identifiers. The second method involves machine
learning algorithms to generate de-identified synthetic speech
outputs that retain essential linguistic qualities but lack personal
traits. Our third approach integrates elements of both signal pro-
cessing and artificial intelligence to create a robust anonymiza-
tion layer that obscures personal identifiers effectively. Our
experimental findings indicate that each method has its strong
point improving certain metrics with novel approach.

2. Methodology
In this section, we introduce the methodologies employed to
explore and evaluate the efficacy of differential privacy tech-
niques in the context of voice anonymization. Our approach
encompasses three distinct strategies, each designed to address
the unique challenges posed by voice data. The first strategy

seeks the most efficient method while reaching high security
level. The second strategy focused on security level while keep-
ing reasonable data utility. The third strategy propose method
reaching high data utility without severe degradation on data
security. Each of these strategies is systematically evaluated
through a experiment, designed to measure their performance
in terms of privacy guarantees and data utility.

2.1. Method 1

Our first method in algorithm 1 aims to achieve high effi-
cacy while maintaining a high level of security in anonymized
speech. Building on the baseline Model 2 (McAdams[1]) for
audio anonymization, we enhance security by incorporating
natural noise into the anonymized utterances. This addition is
designed to mislead and interrupt attackers attempting to verify
the speaker using automated speaker verification models.

The integration process consists of several distinct stages:
the selection of natural noise, the segmentation of anonymized
utterances, and the integration of noise with controlled param-
eters. In particular, natural noises are sourced from [2] by
carefully selecting copyright-free and sufficiently lengthy audio
files.

We begin by selecting 10 different natural noise sound-
waves that do not contain any human voice. These soundwaves
are carefully chosen to ensure they do not introduce any identi-
fiable speech patterns. The selected noises include sounds from
environments like trail walking, quiet libraries, and highways.
The anonymized utterance A is then segmented into random
chunks to increase variability and enhance security. The num-
ber of chunks k is randomly determined, ranging from 1 to 10.
This randomness in segmentation adds an additional layer of
complexity, making it more challenging for attackers to predict
or model the noise patterns.

Each chunk of the anonymized utterance is randomly as-
signed one of the pre-selected natural noise files. The starting
point within each natural noise file, which is approximately 15
seconds in length, is also set randomly. This ensures that the
noise overlaps sufficiently with the speech chunks, effectively
masking them without overpowering the original utterance. To
maintain the intelligibility and naturalness of the anonymized
speech, the loudness of the natural noise is adjusted to 60% of
the original utterance’s volume. This careful adjustment ensures
that the noise serves its purpose of enhancing security without
excessively disrupting the clarity of the speech.

The adjusted natural noise is overlaid onto each chunk of
the anonymized utterance as shown in Figure 1. After the noise
integration, the chunks are combined to form the final enhanced
anonymized utterance A′. This process ensures that the result-
ing audio retains its linguistic integrity while being effectively
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Figure 1: Diagram for method 1

Algorithm 1 Enhanced Security through Natural Noise In-
tegration
Input:
• Anonymized utterance A

• A set of natural noise soundwaves N = {n1, n2, . . . , n10}
• Range of chunks k from 1 to 10
• Duration of noise segment: 15 seconds
• Loudness adjustment factor: 60% of the original utterance

volume
Output: Enhanced anonymized utterance A′

1: Randomly determine the number of chunks k where 1 ≤
k ≤ 10

2: Split the anonymized utterance A into k random chunks:
A = {a1, a2, . . . , ak}

3: for i = 1 to k do
4: Randomly select a natural noise file ni from the set N
5: Randomly select a starting point within the noise file ni

of approximately 15 seconds
6: Adjust the loudness of the noise file ni to 60% of the

original utterance volume
7: Overlay the adjusted noise ni onto the chunk ai

8: end for
9: Combine the chunks {a1, a2, . . . , ak} to form the en-

hanced anonymized utterance A′

10: return A′

anonymized. By integrating these steps, our method signifi-
cantly enhances the security of the anonymized speech. The
use of natural noise, combined with the randomness in segmen-
tation and noise assignment, makes it difficult for automated
speaker verification models to accurately identify the speaker
while preserving the overall quality and naturalness of the au-
dio.

2.2. Method 2

As illustrated in Figure 2, our proposed anonymization method-
ology utilizes Speech-to-Text (STT) and Text-to-Speech (TTS)
models within a structured three-stage process: feature extrac-
tion, feature integration, and speech synthesis. Initially, we
extract fundamental frequency (F0) and textual data from the
speech waveform. To augment the emotional expressiveness of
the anonymized speech, emotion class prototype features, de-
rived from labeled emotional states and corresponding F0 pro-
files, are integrated with the F0 features using an attention-based
mechanism [3]. This integration enriches the F0 features with
nuanced emotional content. Further refinement of this integra-
tion process is achieved through a Feature-wise Linear Modu-
lation (FiLM) layer [4], which merges the emotionally enriched

Figure 2: Diagram for method 2

F0 features with the textual data into a cohesive feature set.
The final stage involves synthesizing the speech waveform from
these integrated features using the TTS model. Detailed discus-
sions of each stage are provided in the following subsections.

2.2.1. Feature Extraction

Fundamental frequency (F0), or pitch, is pivotal in speech pro-
cessing, reflecting the vibration rate of the vocal folds [5]. We
employ the Librosa library for its robust pitch analysis capabili-
ties, essential for preserving the emotional depth of speech. For
text extraction, the ’Whisper’ STT model [6] is utilized for text
extraction, known for its efficacy in varied acoustic settings, en-
suring accurate capture and processing of linguistic content.

2.2.2. Integrating Emotion Class Prototypes with F0 Features

This section details the integration of emotion class prototype
features into the F0 features extracted from the input speech.
The ”emotion class prototype” was derived by clustering based
on emotion labels, where the average centroid for each emo-
tion label was computed to define the prototypes. Employing an
attention-based mechanism, this process ensures that the emo-
tional nuances are effectively captured and represented in the
synthesized speech. By aligning the F0 features with these emo-
tion class prototypes, the emotional expressiveness of the output
is significantly enhanced without compromising privacy.

The process begins with the transformation of both the class
prototype and F0 features to a common feature space to facili-
tate effective integration. This transformation is performed us-
ing neural network layers with ReLU activations to introduce
non-linearity, enhancing the model’s ability to capture complex
patterns:

p = ReLU(Wp · Prototype) (1)

f = ReLU(Wf · F0) (2)

where Wp and Wf are the weight matrices of the transformation
layers for the prototypes and F0 features, respectively.

Upon transforming these features, we compute the similar-
ity between the transformed prototype and F0 features using a
dot product, which serves as the basis for our attention mecha-
nism. The softmax function is then applied to these similarity
scores to derive attention weights, ensuring a normalized distri-
bution of these weights:

Similarity = p⊤f (3)

AttentionWeights = Softmax(Similarity) (4)

These attention weights are subsequently used to modulate the
transformed F0 features (f ), allowing the emotion class proto-
type features to effectively guide the emotional content of the
synthesized speech. The final integration is achieved through a
weighted summation of the features:

Fintegrated = AttentionWeights× f (5)
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Figure 3: Diagram for method 3

This methodology ensures that the feature not only retains its
linguistic integrity but also accurately reflects the intended emo-
tional cues, achieving a balance between anonymity and expres-
siveness.

2.2.3. Feature Integration of Text and F0 Features Using FiLM
Layer

Following the initial extraction and emotional enrichment of F0
features, the next stage involves their integration with text data
using a Feature-wise Linear Modulation (FiLM) layer.

The FiLM layer modulates the features by applying
element-wise affine transformations, specifically calculating the
scaling factor γ derived from the enriched F0 features as fol-
lows:

γn = 1 + Linear(Normalize(Fintegrated)) (6)

where Normalize standardizes the enriched F0 features and Lin-
ear adjusts these features to the appropriate dimensions. The
scaling factor is then applied to the text embeddings feature map
Tn using:

FiLM(Tn|γn) = γn ⊙ Tn (7)

where ⊙ denotes the Hadamard (element-wise) product, Tnis
the feature map from the text embeddings, and γ represents the
scaling factors applied element-wise to Tn. This modulation
adjusts the activation levels within the feature map, effectively
aligning them with the prosodic cues provided by the enriched
F0 features.

2.3. Method 3

Figure 3 illustrates the entire anonymization pipeline for
Method 3. Our appproach is an enhanced version of the
anonymization module from the baseline model 3. As described
in [7], the overall system is divided into four main processes:
(1) Feature extraction, (2) Pitch and energy modification, (3)
Speaker embedding anonymization, and (4) Speech synthesis.
While baseline model 3 employs artificial embeddings gener-
ated by GAN, Our proposed model randomizes embeddings us-
ing representative embedding sets generated through k-means
clustering from an external pool. This highlights the primary
distinction between baseline model 3 and our proposed method.

During the feature extraction process, various features such
as phonetic transcription, fundamental frequency (F0), energy,
phone duration, and speaker embedding x are extracted from
the input speech. For the speaker embedding, we use style em-
beddings with a dimension of 256, which was introduced in [8].

In the pitch and energy modification process, pitch and en-
ergy are modified using randomly generated values.

In the speaker embedding anonymization process, the
speaker embedding of the input speech is anonymized using a

Algorithm 2 Pool of embeddings generation
Input:
• A pool of speech data S = {s1, s2, . . . , sNtotal}
• The number of vectors for a pool of embedding: Npool

Output: A pool of embeddings V = {v1,v2, . . . ,vNpool}
1: Initialize: U = ∅
2: for i = 1 : Ntotal do
3: Extract the embedding ui from the speech data si
4: Add ui to the set U
5: end for
6: Apply k-means clustering to U with the cosine distance

metric to obtain Npool centroids: v1,v2, . . . ,vNpool

7: Return V = {v1,v2, . . . ,vNpool}

Algorithm 3 Embedding perturbation
Input:
• An embedding vector x ∈ RNembed

• A pool of embeddings V = {v1,v2, . . . ,vNpool}
• randomize probability p ∈ [0, 1]

Output: A perturbed embedding xperturb

1: Initialize: U = ∅
2: for i = 1 to Npool do
3: Calculate the distance di between x and vi using (8)
4: end for
5: Find the index imax = argmax

i∈{1,2,...,Npool}
di

6: Let xperturb = vimax

7: for i = 1 to Nembed do
8: Generate u ∼ U(0, 1)
9: if u ≤ p then

10: Generate j ∼ Uniform{1, 2, . . . , Npool}
11: xperturb,i = vj,i

12: end if
13: end for
14: Return xperturb

pool of embeddings. In order to create a pool, k-means cluster-
ing is applied to the embedding vectors extracted from a pool of
speech data. For k-means clustering, cosine distance is used as
the distance metric, where cosine distance between two vectors
u and v are defined by

d(u,v) = 1− u · v
|u||v| . (8)

From the pool of embeddings, the one with the largest co-
sine distance xperturb from the speaker embedding of the in-
put speech x is chosen. Also, Ncandidate embeddings with
the largest cosine distance from x are selected. Among these
Ncandidate embeddings, Nanon embeddings are selected ran-
domly for perturbation. xperturb is randomized according to a
randomize probability p, with entries replaced by those from the
Nanon embeddings. For our experiments, we created the pool
of embeddings using the Librispeech train-clean-360 dataset.

Finally, in the speech synthesis process, the anonymized
embedding is synthesized with the modified energy, modified
F0, and phone duration to create a mel spectrogram. It is
then fed into a HiFi-GAN vocoder to generate the anonymized
speech.



Parameter Value
Ntotal 1000
Npool 500

Ncandidate 200
Nanon 100

p 0.2

Table 1: Parameters for Method 3

Figure 4: EER-WER on LibriSpeech-test data

3. Experiments
3.1. Datasets

For our experiments, we utilized two primary datasets: Lib-
riSpeech and IEMOCAP. LibriSpeech, which consists of 960
hours of read English speech derived from audiobooks, was
used for Automatic Speaker Verification (ASV) and Auto-
matic Speech Recognition (ASR) evaluations. The IEMOCAP
dataset, an emotional audio-visual corpus, was used for Speech
Emotion Recognition (SER) evaluation. To accommodate the
small number of speakers and data, we adopted a leave-one-
conversation-out cross-validation strategy for SER, where eight
sessions are used for training and the remaining sessions for
development and evaluation. Performance was assessed using
the evaluation methodologies provided by VoicePrivacy for both
LibriSpeech and IEMOCAP’s evaluation sets. In the case of
Method 2, as per the workshop guidelines, we utilized autho-
rized pretrained STT and TTS models, thus bypassing a sepa-
rate training process.

3.2. Experimental Setups

Our experimental framework is based on baselines from the
VoicePrivacy 2024 Challenge. The setup includes two NVIDIA
GeForce RTX 3090 GPUs for handling computationally in-
tensive tasks. Key software components include Python 3.11,
CUDA toolkit 11.7 for GPU acceleration, and PyTorch 2.0.1 for
neural network operations. Software dependencies are meticu-
lously managed to ensure consistent interactions and updates,
facilitated by a version control system with automatic triggers.

4. Results
Our study uses three metrics for evaluation[9]: the Equal Er-
ror Rate (EER) for privacy, measuring speaker similarity us-
ing cosine distances in an automatic speaker verification sys-
tem; the Word Error Rate (WER) for linguistic accuracy, gaug-
ing transcription discrepancies in anonymized speech; and the
Unweighted Average Recall (UAR) for emotional expressive-
ness, assessing emotion recognition accuracy in speech emotion
recognition systems.

Our results, as detailed in Table 2, Table 3, and Table 4, and

Figure 5: EER-UAR on IEMOCAP-test data

visually represented in Figure 4 and Figure 5, reveal a nuanced
balance between enhancing speaker anonymity and maintain-
ing utility in speech output. For method 3, the specific param-
eter values are shown in Table 1. Table 2 showcases the EER
for our methods (Ours 1, Ours 2, and Ours 3), demonstrating a
substantial increase in EER compared to the original data and
baselines, indicating enhanced speaker anonymity.

However, detailed examination in Table 3 reveals signifi-
cant variations among the methods. Method 1, in particular,
exhibits a Word Error Rate (WER) that is substantially higher
than both the original recordings and any of the baseline mod-
els. This severe degradation in speech intelligibility for Method
1 contrasts sharply with the results from Method 3, which shows
a WER closer to baseline values, suggesting a better balance
between anonymity and speech intelligibility. The UAR scores
in Table 4, provide insight into the emotional expressiveness of
each method. Although Methods 1 and 2 resulted in lower UAR
scores compared to baselines, reflecting challenges in emo-
tional conveyance, these findings are instructive for identify-
ing specific enhancements needed in anonymization processes.
Method 3 exhibited higher UAR scores, nearing baseline perfor-
mance, underscoring its capability to retain more emotional nu-
ances, thus validating its potential as a more effective approach
to speech anonymization.

Figure 4 and Figure 5 graphically illustrate these trade-
offs, where the shift towards higher EER and lower WER and
UAR across our methods visually underscores the impact of our
anonymization techniques. These figures effectively highlight
the relationship between increased privacy protection and its
consequential effects on speech utility.

Despite these findings, it is essential to consider the trade-
offs inherent in anonymization technologies. Our approach sig-
nificantly obscures speaker identity, a critical aspect of privacy
protection. However, this enhancement in privacy comes at the
cost of reduced utility metrics. We posit that the elevated EER
values, reflecting strong anonymization performance, are a de-
sirable outcome in scenarios where privacy is paramount. The
trade-offs observed highlight the complex interplay between
achieving robust privacy protection and retaining high utility in
anonymized speech. We believe our methods achieve a com-
mendable balance, providing substantial privacy gains while
maintaining acceptable levels of speech intelligibility and emo-
tional expressiveness, as evidenced by our systematic evalua-
tions.

This balance underscores the effectiveness of our innova-
tive approach in settings where both privacy and utility are crit-
ical considerations, positioning our methods as a viable solution
for applications demanding high degrees of speaker anonymiza-
tion.



Dataset Gender Orig. Ours 1 Ours 2 Ours 3 B1 B2 B3 B4 B5 B6

LibriSpeech-dev
female 10.51 40.03 44.32 28.81 10.94 12.91 28.43 34.37 35.82 25.14
male 0.93 35.22 47.52 22.18 7.45 2.05 22.04 31.06 32.92 20.96

Average 5.72 37.63 45.92 25.50 9.20 7.48 25.24 32.71 34.37 23.05

LibriSpeech-test
female 8.76 39.78 45.05 28.46 7.47 7.48 27.92 29.37 33.95 21.15
male 0.42 35.36 44.77 27.16 4.68 1.56 26.72 31.16 34.73 21.14

Average 4.59 37.57 44.91 27.81 6.07 4.52 27.32 30.26 34.34 21.14

Table 2: EER (%) achieved on data anonymized by ours and baselines vs. original (Orig.) data

Dataset Orig. Ours 1 Ours 2 Ours 3 B1 B2 B3 B4 B5 B6
LibriSpeech-dev 1.80 98.15 5.02 4.14 3.07 10.44 4.29 6.15 4.73 9.69
LibriSpeech-test 1.85 97.88 4.78 4.28 2.91 9.95 4.35 5.90 4.37 9.09

Table 3: WER (%) achieved on data processed by ours and baselines vs. original (Orig.) data

Dataset Orig. Ours 1 Ours 2 Ours 3 B1 B2 B3 B4 B5 B6
IEMOCAP-dev 69.08 28.02 28.45 38.09 42.71 55.61 38.09 41.97 38.08 36.39
IEMOCAP-test 71.06 27.93 29.44 37.57 42.78 53.49 37.57 42.78 38.17 36.13

Table 4: UAR (%) achieved on data processed by ours and baselines vs. original (Orig.) data

5. Discussion

The findings of this report underscore the potential and chal-
lenges of applying differential privacy techniques to voice
anonymization. Our experimental results demonstrate that the
proposed methods, particularly the ones incorporating natural
noise and emotion class prototype features, significantly en-
hance privacy protection, as indicated by the higher Equal Error
Rate scores. These methods effectively obscure the speaker’s
identity, making it more difficult for adversarial attacks to re-
identify individuals based on their voice data. This is crucial in
an era where voice-activated technologies are becoming ubiqui-
tous, posing increased risks of privacy breaches.

However, the trade-offs between privacy and data utility re-
main a critical concern. While our methods achieved higher pri-
vacy metrics, they also exhibited a noticeable decline in utility,
particularly in tasks requiring emotional content recognition.
The decrease in Unweighted Average Recall indicates that the
anonymized data loses some of its richness, which is vital for
applications like emotion detection and nuanced speech anal-
ysis. This degradation can impact the effectiveness of voice-
based systems in real-world applications, where maintaining
both privacy and high data utility is essential.

Looking forward, it is evident that further research is
needed to strike a better balance between privacy and utility.
Enhancing the sophistication of differential privacy algorithms
to retain more of the original data’s characteristics without com-
promising privacy is a promising direction. Additionally, ex-
ploring adaptive noise addition techniques that can dynamically
adjust based on the context and sensitivity of the data might of-
fer a viable solution. As privacy regulations continue to evolve,
developing robust, privacy-preserving techniques that comply
with legal standards while meeting the practical needs of data
utility will be paramount. The insights from this report lay a
foundation for such advancements, contributing to the broader
goal of secure and effective data anonymization in the digital
age.

6. Conclusion
We proposed three anonymization methods for voice, one of
unstructured data, and evaluated their effectiveness in terms of
both privacy and utility. Compared to the original voice and
a baseline model, our methods exhibited higher EER perfor-
mance in terms of privacy. However, they showed performance
degradation in utility, particularly in emotion recognition task.
Considering these aspects, as future work, we plan to research
and investigate factors capable of capturing emotional content
in voices. We will also explore methods to enhance utility for
various contents beyond emotion. Furthermore, we aim to ex-
plore approaches for simplifying or lightweighting models suit-
able for practical system applications.
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