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Abstract
Speech anonymization plays an important part in protecting in-
dividuals’ privacy in digital communication. However, ensur-
ing anonymity while preserving the emotional and semantic in-
tegrity of speech poses significant challenges. This paper pro-
poses a novel approach to address these challenges by integrat-
ing speaker-independent pre-trained emotion encoding into a
fully end-to-end voice conversion model. By leveraging this
approach, emotional information can be preserved and consis-
tently represented in anonymized speech to a certain degree.
This paper also introduces a new method that creates pseudo-
speakers through model fusion to bypass the mismatch prob-
lem between the pseudo-speaker and the target emotion. Ex-
perimental results indicate that our methodology achieves a nu-
anced balance, maintaining an EER exceeding 30%, while ef-
fectively enabling accurate emotion recognition of nearly 50%
and achieving a WER below 5% in the VPC evaluation.
Index Terms: speech generation, voice privacy, voice conver-
sion, speech emotion

1. Introduction
Speech serves as a rich repository of speaker-specific informa-
tion, encompassing aspects such as identity, age, gender, race,
and even health status [1]. However, in scenarios where such
identity information is misused, potential risks of crimes or so-
cietal issues may arise. Therefore, safeguarding voice privacy
has emerged as a critical concern. Current research efforts not
only focus on concealing the identity of the original speaker but
also emphasize maintaining the integrity of semantic informa-
tion to accurately convey the intended message [2, 3, 4, 5].

The Voice Privacy Challenge (VPC) 2024 underscores the
task of preserving emotional nuances during the anonymization
process. Achieving a balance among privacy protection, seman-
tic consistency, and emotion preservation serves as the bench-
mark for evaluating anonymization effectiveness [1]. Central to
this challenge is the need to effectively model emotions within
anonymization systems and address potential mismatches be-
tween the speaker embedding of the original speech and the de-
sired emotional expression in the anonymized output.

State-of-the-art speech anonymization methods, exempli-
fied by [2, 4], excel in privacy protection by employing so-
phisticated techniques within the speaker embedding space to
create ”pseudo-speakers” that are maximally dissimilar to the
source speaker. They transform speaker vectors to hide orig-
inal speaker information without damaging diversity among
different speakers. These pseudo-speakers, though derived
and devoid of real speech data in most cases, play a pivotal
role in enhancing anonymity. However, it is likely for this
reason that maintaining sufficient emotional expressiveness in

speech becomes particularly complex. The creation of pseudo-
speakers represents inherent sparsity: while enhancing effec-
tiveness for privacy protection, this approach may lead to a
training-inference mismatch problem in emotional speech gen-
eration, potentially impairing the accurate conveyance of emo-
tions. On the other hand, some speech anonymization methods,
especially those with digital signal processing (DSP), can well
preserve emotions. These methods are based on the assumption
that speaker information is time-invariant and stable. Unlike
neural network-based approaches that disentangle speaker in-
formation from emotional content unsupervisedly, DSP meth-
ods focus on modifying instantaneous speech characteristics
such as pitch, spectral envelope, and time scaling to alter the
timbre of the original speech, creating an impression of differ-
ent speakers. Throughout this process, these methods prioritize
the retention of emotional expressiveness by maintaining the
consistency of acoustic features that encode emotional informa-
tion, such as fundamental frequency contour, vowel energy, and
speech rate. However, while DSP methods often succeed in pre-
serving emotional nuances, their anonymization efficacy may
not always meet stringent requirements. The generated speech
may also sacrifice content fidelity, thereby compromising the
accuracy of the conveyed message.

In this paper, we have conducted some explorations to try
to alleviate this trade-off problem. We base our approach on a
fully end-to-end voice conversion(VC) model, with which we
achieve the purpose of hiding identities by replacing the source
speaker with other real or pseudo speakers. In terms of mod-
eling emotions, we use external or adaptive emotion encoding
schemes to help train the acoustic model. Beyond voice con-
version, We introduce a model fusion method to create pseudo
speakers to perform privacy protection. We use the evaluation
scripts of VPC 2024 to measure the privacy protection capa-
bilities and content and emotion performance of our proposed
system.

2. Related Work
2.1. VPC 2024 settings and evaluation metrics

VPC 2024 specifically addresses the subgoal of voice
anonymization: altering a speaker’s voice to conceal their iden-
tity as much as possible while preserving the content and emo-
tional state intact [1]. This challenge is framed as a game be-
tween a user who shares data for a desired downstream task
and an attacker who tries to identify the speaker using that data.
Participants are tasked with developing systems that generate
speech waveforms that masks the speaker’s identity at the ut-
terance level without distorting linguistic and emotional infor-
mation. The effectiveness of these systems is measured using
word error rate (WER) and unweighted average recall (UAR)



for utility, obtained from automatic speech recognition (ASR)
and speech emotion recognition (SER) systems, respectively.
The ability to protect privacy is assessed using the equal error
rate (EER) from automatic speaker verification (ASV) systems.
The results of the competition are determined in this way: At
the same anonymization capability level (EER), the participat-
ing systems with lower WER and higher UAR are considered to
have better balanced performance. The official training and test
data are all based on open-source datasets. The datasets used
to measure privacy and utility are the speech emotion dataset
IEMOCAP and the multi-speaker speech dataset LibriSpeech.

2.2. Baseline systems

VPC 2024 evaluation plan has released 6 different baseline sys-
tems in total. Most of these baseline systems use HifiGAN or
vocoder-like modules with similar structures and functions to
generate anonymized speech. In addition, some methods use
audio codecs for encoding and decoding, and methods that are
completely based on DSP. The details of these methods and
baseline performance can be found in the evaluation plan of
VPC2024 [1]. Note that the approach of using DSP alone has
the highest emotion retention ability (UAR↑), with its perfor-
mance far exceeding that of other baselines, but comes at the
cost of a higher chance of making more mistakes in content
(WER↑) and weaker privacy protection capabilities (EER↓).
On the contrary, the remaining neural network speech synthe-
sis systems show essentially the opposite situation.

3. Methodology
3.1. Pipeline

Our system processes input speech and outputs anonymized
speech results through a fusion model, illustrated in Figure 1.
This fusion model consists of multiple fine-tuned, single-target
speaker, fully end-to-end voice conversion (VC) models, inte-
grated at the parameter level on each node. For each speech in-
put, we apply a random fusion weight to ensure that the speaker
information carried by each output speech remains relatively
distinct. Without restrictions, we may generate some similar
pseudo-speakers by accident though, this does not have any im-
pact due to the huge amount of data.

3.2. VC base model

Our system, the end-to-end VC model, is demonstrated in Fig-
ure 2, which is modified from a model that is highly capable
of deceiving anti-spoofing systems [6]. On training, a piece of
input speech is encoded via both a priori and a posteriori encod-
ing. The prior part contains three different encoders. The Yaapt
[7] encoder is used to extract and encode F0 information, which
will effectively represent the emotional attribute information in
the acoustic model. The content encoder is an automatic speech
recognition (ASR) model, through which we extract the features
from a certain bottleneck layer. The speaker encoder is a simple
one-hot embedding module. The three parts together constitute
the prior latent space variables. The posterior part accepts linear
spectrum input and generates the posterior latent space variables
through the transformer structure [8]. Both the prior and pos-
terior latent space variables are reparameterized and converted
to the mean and variance of a Gaussian distribution. We intro-
duce a KL loss to constrain their consistency. We use the gra-
dient reversal method to blur the speaker information that may
be carried in the content and base frequency encoding as much

as possible. The waveform generation part adopts a transposed
convolution upsampling structure similar to HifiGAN [9], and
the network is constrained by generative/adversarial loss and
reconstruction loss.

3.3. ASR bottleneck feature

We have experienced 2 different features in this regard. One is
based on a hybrid CTC/transformer structure proposed by [10].
We extract the log probability of the outputs before the ASR
decoder layer to represent the content information required by
the acoustic model. This feature is called phoneme posterior-
grams(PPGs). PPGs are known to contain detailed content in-
formation and are frequently utilized in voice conversion tasks
[11]. However, PPGs may also inadvertently capture and leak
speaker-specific timbre and style information unique to each
utterance. While preserving emotional expressiveness neces-
sitates some consideration of style information, which can be
beneficial, the leakage of speaker timbre poses a challenge for
anonymization tasks. Since voice conversion training is funda-
mentally a self-reconstruction task, it becomes challenging to
ascertain during training whether the generative model utilizes
the residual timbre information in PPGs for reconstructing the
speaker’s voice. This potential leakage complicates the effort to
ensure complete speaker anonymization. We also utilize the ex-
act content features in baseline B5, an ASR-based model built
on a pre-trained wav2vec2 model with three additional TDNN-
F layers. In the final TDNN-F layer, we apply vector quantiza-
tion (VQ) 1. The incorporation of VQ into this framework aims
to minimize the encoding of speaker information within the bot-
tleneck (BN) features, thereby enhancing the disentanglement
properties.

3.4. Emotion disentanglement and modeling

The key to the acoustic modeling stage involves the comprehen-
sive utilization of both speech emotion and speech content in-
formation to predict acoustic features accurately. Emotional in-
formation can take various forms: discrete category labels (such
as calm, happy, sad, angry, surprised), continuous represen-
tations based on dimensional models like the arousal-valence
model [12], or emotion embedding extracted from a reference
speech [13]. In the context of the anonymization task, where
the target speaker may not exist, we must address the chal-
lenge of emotion disentanglement and transfer. This process in-
volves disentangling emotion from the original input sentence,
obtaining a representation that is independent of the speaker and
speech content, and subsequently applying appropriate methods
to integrate this emotional representation into the synthesized
target speech.

Inspired by previous studies in emotion voice conversion
[14][15] and speech emotion transfer [16][17], we enhance the
emotion modeling capability via two approaches in this paper.
The first is leveraging an wav2vec based emotion encoder pre-
trained on MSP-Podcast according to [18], which outputs emo-
tion embeddings and we add them to the acoustic model as
a priori encoding. The second is using a global style tokens
(GST) encoder composed of multi-head attention modules [13].
GST is unsupervisedly trained out of the mel spectrum extracted
from the input speech, and is often regarded as an extractor of
emotional features in the field of emotional TTS. During train-
ing, explicit emotion labels along with orthogonal projection
discriminant loss [19] are introduced to ensure that the encoding

1https://github.com/deep-privacy/SA-toolkit



Figure 1: System Anemone, total model pipeline

has relatively strong emotion representation capabilities. Be-
sides, it should be pointed out that the extracted F0 can also
promote the effect of emotion generation.

3.5. Model fusion

In order to enhance the anonymization effect while minimizing
the sacrifice on emotional preservation and content consistency,
we aim for our pseudo-speaker construction process to avoid
introducing training-inference mismatches. This approach en-
sures that the acoustic model and HifiGAN produce fewer ”rec-
ognizable” pattern artifacts and maintain sound quality stabil-
ity at the level perceptible to human hearing. Thus, we create
pseudo-speakers by fusing model nodes at the parameter level.
Assume that we have several end-to-end voice-conversion mod-
els that have been sufficiently fine-tuned with single-speaker
data. After loading each model, we sum all the valid node
weights involved in the inference process in the model network
according to a certain ratio, except for those encoders used for
information disentanglemnet, which do not participate in the
fusing process. Then we regard the obtained weight set as a
new, fine-tuned single-speaker model. When inferring with the
new model, the generated speech timbre will sound like an ”in-
the-middle-person” among multiple fused speakers if the fu-
sion weight is not a one-hot vector. These generated pseudo-
speakers will make contributions in interfering with the ASV
system. We believe that by doing so, we can lightly and ef-
fectively create a large number of pseudo-speakers even when
there are only a few available high-quality speakers with suffi-
cient data. Meanwhile, each pseudo-speaker is equipped with
corresponding acoustic model inference weights, so that we can
avoid the generated speech quality being poor due to sparse
data. We have had similar experiences in common tasks such as
TTS (text-to-speech) and SVS (singing voice synthesis). Dur-
ing the inference stage, the weights are randomly generated for
each single utterance, and they sum to 1.

3.6. Training settings

This section shows our training details, including the pre-
trained model, training data, training environment, etc. The
table below shows the composition and training data of our var-
ious modules.

Table 1: Modules and training corpora

Modules Description

Yaapt F0 encoder baseline given
Hybrid transformer-CTC ASR we pretrain on

LibriTTS[20] train-
clean-360 and train-
other-500

Wav2vec emotion encoder [18]
GST attention-head=4,

layer=6, out dim=192
HifiGAN Resblock 1, upsam-

pling 160x
Total training LJ-speech[21],

ESD[22], train-clean-
360

Fine-tuning LJ-speech, ESD

After the base model has been trained for 200 000 steps,
it is fine-tuned for about 40 000 steps for each single speaker
to make preparations for model fusion. GPU using: NVIDIA
A100x4 for the base model and NVIDIA A100x1 for each fine-
tuning task. The batch size is always 16 on a single GPU. The
base model training takes about 12 hours, and the model fine-
tuning for each speaker takes 1-2 hours. For model fusion, we
fine-tune 11 different speakers and randomly select the models
of 6 speakers as the source for fusion.



Figure 2: System Anemone, end-to-end emotional voice conversion structure

3.7. Training criteria

We use the following criteria to guide the model learning to
convergence.

Acoustic model: Spectral loss
This term is used to ensure the performance of the self-

reconstruction training process of the VC acoustic model. We
consider L1 loss on mel-spectrograms.

Acoustic model: Kullback-Leibler (KL) loss
Both the prior and posterior latent space variables are repa-

rameterized and converted to the mean and variance of a Gaus-
sian distribution. KL loss is adopted to close their gap.

HifiGAN: Reconstruction loss
The constraint is that the generated speech should be as sim-

ilar as possible to the input speech, which is a standard vocoder
loss in self-reconstruction training process.

HifiGAN: Generative/adversarial loss
This part belongs to the basic loss of the GAN module,

which is used to maintain generative adversarial training and
jointly optimize the generator and discriminator.

Emotion encoder: Cross Entropy (CE) or Orthogonal Pro-
jection (OP) loss

This term is used to constrain the results of the emotion
encoder to re-predict the emotion type so that the emotion en-
coding can better express the clustering characteristics.

Speaker rev. grad module: Cross Entropy (CE) loss
To further eliminate residual speaker information in the

emotion encoding, we connect a classification module from the
gradient inversion layer to the speaker encoder following the
encoding layer. Since the training objectives on both sides of
the inversion layer are opposed, higher classification accuracy
indicates that the emotion encoding before the inversion layer
contains less speaker information. This approach thus enhances
disentanglement capability.

Weights for different losses:
Ltotal = Lgen + Lspk + Lemo + 45 ∗ Lspec + 500 ∗ Lkl

4. Results and discussion
We name our systems as in the following Table 2. Note that
we only submit ppg-w2vF0-fusion and ppg-GSTF0-fusion to the

VPC 2024 for ranking purposes. Others predominantly function
as modules for ablation analysis.

Table 2: Systems involved in the experiment

System content en-
coder

emotion
encoder

model
fusion

ppg-w2vF0-
fusion

ASR-PPGs w2v + F0 Yes

ppg-GSTF0-
fusion

ASR-PPGs GST + F0 Yes

ppg-F0-fusion ASR-PPGs F0 only Yes
ppg-w2vF0 ASR-PPGs w2v + F0 No
vqbn-w2vF0-
fusion

ASR-VQ w2v + F0 Yes

Tables 3, 4, and 5 show how our systems performed in eval-
uations.

It is demonstrated in the table above, that in terms of emo-
tion preservation performance, our methods outperform other
baselines except for B2. This outcome is expected, considering
that the B2 baseline employs a purely DSP approach, result-
ing in comparatively minor modifications of the original input
samples with regard to emotional features. In cases where w2v
emotion encoder is not employed, the choice between PPGs or
VQ-BN as content embedding features seems to appear incon-
sequential, as the performance of ppg-F0-fusion aligns closely
with that of baseline B5 (B5 is roughly vqbn + F0, with a light-
weighted acoustic model). Note that this comparison may be
somewhat inadequate, because we have no way of knowing the
specific training details of the ASR part of B5, and the data
used for training also has some deviations from the data we use
to train the ASR-PPG features (the overall distribution is con-
sistent, but the specific content is not completely consistent).

In particular, we find that in the emotion test results, ex-
cept for the very poor results of the sad category, the rest are
comparable to the original data. We believe that this may be be-
cause the sad emotion in the ’act-out-style’ training data (ESD)
is more performative, while the sadness in the test data IEMO-



Table 3: Emotion: SER (%) evaluation results

System ave.↑ IEMOCAP-
dev↑

IEMOCAP-
test↑

ppg-w2vF0-
fusion

49.96 48.70 51.22

ppg-GSTF0-
fusion

43.28 42.38 44.18

ppg-F0-fusion 38.61 37.67 39.54
ppg-w2vF0 47.36 46.10 48.62
vqbn-w2vF0-
fusion

41.00 40.91 42.10

Origin 70.07 69.08 71.06
Given B1 42.74 42.71 42.78
Given B2 54.55 55.61 53.49
Given B3 37.83 38.09 37.57
Given B4 42.38 41.97 42.78
Given B5 38.13 38.08 38.17
Given B6 36.26 36.39 36.13

CAP [23] is mostly reflected in very low volumes, sometimes
even submerged by noise, resulting in its emotion features not
being significant enough. In addition, some emotional features
may be reflected in supra-segmental rhythm patterns. The sys-
tems we propose attempt to model emotions at the whole utter-
ance level, which may lack consideration in this regard.

Table 4: Content: WER (%) evaluation results

System ave.↓ libri-dev↓ libri-test↓

ppg-w2vF0-
fusion

4.72 4.79 4.65

ppg-GSTF0-
fusion

4.51 4.60 4.43

ppg-F0-fusion 4.50 4.32 4.67
ppg-w2vF0 4.69 4.78 4.60
vqbn-w2vF0-
fusion

5.19 5.25 5.13

Origin 1.82 1.80 1.85
Given B1 2.99 3.07 2.91
Given B2 10.20 10.44 9.95
Given B3 4.32 4.29 4.35
Given B4 6.02 6.15 5.90
Given B5 4.55 4.73 4.37
Given B6 9.39 9.69 9.09

Our proposed method is at an intermediate level between
the results of various baselines considering WER, which re-
sults are shown in Table 4. Upon examining baseline 1, we
observe its utilization of ASR bottleneck layer features for con-
tent encoding. Despite this, the incorporation of x-vector by the
speaker mitigates pressure on the content encoder, enhancing
content consistency and thereby reducing WER. Conversely,
baseline 3’s advantage lies in explicit phoneme decoding for
control purposes. Despite this, we acknowledge that a slight
increase in WER may be unavoidable and acceptable, particu-
larly with the introduction of emotional encoding schemes like
w2v or GST, which can potentially distort content due to con-
flicting interactions with emotional information. This parallels
everyday communication scenarios where strong emotions can
compromise content intelligibility and sometimes even make a

little change to pronunciation, and such phenomenon is more
obvious in tonal languages such as Chinese and Thai.

Table 5: Privacy: EER (%) evaluation results

System ave.↑ libri-
dev-f↑

libri-
dev-
m↑

libri-
test-f↑

libri-
test-
m↑

ppg-
w2vF0-
fusion

31.55 32.53 29.50 33.40 30.76

ppg-
GSTF0-
fusion

18.58 22.98 15.37 19.68 16.29

ppg-F0-
fusion

25.73 25.33 23.05 30.10 24.43

ppg-
w2vF0

23.25 24.60 22.58 26.67 19.14

vqbn-
w2vF0-
fusion

27.86 32.41 19.08 29.90 30.03

Origin 5.16 10.51 0.93 8.76 0.42
Given B1 7.64 10.94 7.45 7.47 4.68
Given B2 6.00 12.91 2.05 7.48 1.56
Given B3 26.28 28.43 22.04 27.93 26.72
Given B4 31.48 34.37 31.06 29.37 31.16
Given B5 34.36 35.82 32.92 33.95 34.73
Given B6 22.10 25.14 20.96 21.15 21.14

We conclude from Table 5 that ppg-w2vF0-fusion can
achieve a good privacy-protection ability with an EER result of
more than 30%, and if without model fusion, the EER perfor-
mance drops by nearly 8%. This basically indicates that using
model fusion methods to increase the sparsity of the speaker
space can enhance privacy protection capabilities. We are sur-
prised to find that simply by replacing the emotion features of
w2v with GST, EER significantly decreases. We speculate that
the style information of GST may contain too many speaker
characteristics that are difficult to filter out, and this part ac-
tually makes the clustering effect of different utterances in the
speaker space better after model fusion, or in other words, the
utterances of the same source speaker can find more common-
alities.

5. Conclusion
In this paper, we explore the techniques of speech anonymiza-
tion while preserving emotional fidelity, and propose a method
based on an integrated approach of end-to-end voice conversion
(VC) models and emotion disentanglement. Our method lever-
ages speaker-independent emotion encoding and model fusion
strategies to achieve a balance between privacy protection and
emotional preservation in anonymized speech. Through exten-
sive evaluations on the VPC 2024 dataset, we demonstrate that
our proposed systems, particularly those integrating emotion
encoders and employing model fusion, outperform those base-
line methods. Notably, our approach also maintains acceptable
word error rates (WER) in automatic speech recognition (ASR)
tasks, indicating its effectiveness in balancing privacy preserva-
tion with semantic and emotional integrity.

However, our approach still exhibits several limitations. For
instance, we encounter difficulty in elucidating the inner work-
ings of the ’black-box’ neural network, so we cannot mathemat-



ical and rigorously substantiate whether the model fusion tech-
nique really disrupts the discrimination ability of ASV systems.
Moreover, the granularity of our emotional modeling remains
inadequate, leaving room for enhancement in emotional trans-
fer effectiveness.
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