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Baselines

e Strong performance in the privacy objective (EER) necessitates the removal of acoustic characteristics,
like duration, speaking style, from source speech. (STTTS, ASRBN, NAC)

e while strong performance in the utility objective (emotion preservation, UAR) requires more acoustic
characteristics from the source utterance (McAdams)
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e Random Admixture (40.81% EER, 47.1% UAR)
Text-to-Speech KNN-VC

o Achieve the best of both worlds
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KNN-Voice Conversion [1]

[1] Voice Conversion With Just Nearest Neighbors, Baas et al., 2023
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Cascading ASRand TTS

W Source Speech
e ASR: Whisper

e TTS: Multispeaker-VITS [2] '
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https://github.com/openai/whisper

https://huggingface.co/datasets/rhasspy/piper-checkpoints/blob/main/en/en_US/libritts_r/medium
[2] Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech, J. Kim et al., 2021
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Random Admixture - Getting the best of both worlds

Created in response to the
adversarial training setup for the
Voice Privacy Challenge

Inspired by data poisoning attacks,
which demonstrate that a small
amount of poisoned data can alter the
decision boundary sufficiently that the
model performance degrades
significantly
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Random Admixture - Getting the best of both worlds

UAR vs. EER for Random Admixture Systems

e Created in response to the e
adversarial training setup for the ” g
Voice Privacy Challenge |

e Inspired by data poisoning attacks,
which demonstrate that a small
amount of poisoned data can alter the
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Table 1: Privacy and Utility Performance of Various Anonymization Approaches

(Darker Color Indicates Better Performance)

Privacy - EER (%) T

Utility - UAR mean (%) T

Utility - WER (%) |

ID System

libri-dev-f libri-dev-m libri-test-f libri-test-m  avg. IEMOCAP-dev IEMOCAP-test avg. libri-dev libri-test avg.
0 origin 10.511 0.931 8.761 0.418 5.16 69.0796 71.0618 70.07 1.807 1.844  1.83
1" kNN-VC 11.789 5.141 9.307 5.570 7.95 56.7330 56.6740 56.70  3.275 3.048  3.16
2 KNN-VC + len variation 11.192 5.125 10.218 5.793 8.08 56.9488 55.638 56.29 3.28 31387 3:33
3 KNN-VC+ len var + noise-in 24.681 18.624 19.891 19.115 20.58 44.1260 42.3846 4326 11993 10.008 11.00
4* whisper-VITS 47.584 49.233 47.445 48.750 48.25 30.1074 30.5932 3035 3.743 35S 35
1 +4" Admixture (p = 0.2) 26.003 16.155 20.776 24.722 21.91 51.2840 52.1324 51.71 3300 3290 331
1 +4% Admixture (p = 0.325) 34518 32918 34.532 33.676 3391 49.3398 48.7304 49.04 3514 3336 343
1 +4* Admixture (p = 0.4) 41.192 40.660 42.182 39.225 40.81 47.0784 47.1046 47.09 3454 3.199 333
5 WavLM Conv (base) 13.622 6.987 9.307 4.231 8.54 55.5458 53.9522 5475 3.044 2982 3.01
6 WavLM Conv + Adv Spk Loss 17.472 9.005 12.773 7.164 11.60 50.7706 50.4628 50.62 4442 4015 423
7 WavLLM Conv + Discrete Loss 18.041 12.268 13.716 10.913 13.73 44.5292 42.5980 43.56 10313  10.014 10.16
8 WavLM Conv + Adv + Discrete Loss ~ 19.308 11.645 13.870 10.690 13.88 44.0936 429102 43,50 10.811  10.850 10.83
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Thanks and Questions
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